A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data

We present new profiles of mantle viscosity derived on the basis of non-linear, Occam-style joint inversions of an extensive set of data associated with mantle convection and glacial isostatic adjustment (GIA). The convection related observables include satellite-derived free-air gravity harmonics, the geodetically inferred excess ellipticity of the CMB and tectonic plate motions. The GIA constraints involve two classes of observables previously shown to be relatively insensitive to errors in the late Pleistocene ice history: the so-called Fennoscandian relaxation spectrum (FRS) and a set of site-specific decay times determined from the postglacial sea-level history in Hudson Bay and Sweden. The inverted viscosity profiles show a significant, three orders of magnitude, increase from the upper mantle (mean value of f4 � 10 20 Pa s) to a high-viscosity (>10 23 Pa s) peak at

[1]  Guy Masters,et al.  An inversion for radial viscosity structure using seismic tomography , 1992 .

[2]  Göran Ekström,et al.  The unique anisotropy of the Pacific upper mantle , 1998, Nature.

[3]  D. Wolf Note on estimates of the glacial-isostatic decay spectrum for Fennoscandia , 1996 .

[4]  Mark Simons,et al.  A reappraisal of postglacial decay times from Richmond Gulf and James Bay, Canada , 2000 .

[5]  W. R. Peltier,et al.  Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity , 1983 .

[6]  W. Peltier,et al.  Post-glacial rebound and transient lower mantle rheology , 1986 .

[7]  W. Peltier,et al.  The heat flow constraint on mantle tomography-based convection models: Towards a geodynamically self-consistent inference of mantle viscosity , 1995 .

[8]  A. Forte,et al.  Geodynamic evidence for a chemically depleted continental tectosphere. , 2000, Science.

[9]  J. Mitrovica,et al.  New inferences of mantle viscosity from joint inversion of long‐wavelength mantle convection and post‐glacial rebound data , 1996 .

[10]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  L. Cathles,et al.  The Viscosity of the Earth's Mantle , 1975 .

[12]  K. Lambeck,et al.  Late Pleistocene and Holocene sea‐level change in the Australian region and mantle rheology , 1989 .

[13]  N. Mörner Earth rheology, isostasy, and eustasy , 1980 .

[14]  K. Lambeck,et al.  Mantle dynamics, postglacial rebound and the radial viscosity profile , 2000 .

[15]  C. Froidevaux,et al.  Converting mantle tomography into mass anomalies to predict the Earth's radial viscosity , 1994 .

[16]  Ice mass loss in Antarctica and stiff lower mantle viscosity inferred from the long wavelength time dependent gravity field , 2002 .

[17]  J. Mitrovica,et al.  Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data , 2001, Nature.

[18]  W. Eddy,et al.  The GEM-T2 Gravitational Model , 1989 .

[19]  W. Peltier Mantle convection : plate tectonics and global dynamics , 1989 .

[20]  R. McConnell,et al.  Viscosity of the mantle from relaxation time spectra of isostatic adjustment , 1968 .

[21]  J. Andrews A geomorphological study of post-glacial uplift,: With particular reference to Arctic Canada, , 1970 .

[22]  J. Mitrovica,et al.  Haskell [1935] revisited , 1996 .

[23]  Thomas A. Herring,et al.  Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Ea , 2002 .

[24]  B. Hager Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .

[25]  W. Peltier,et al.  A new formalism for inferring mantle viscosity based on estimates of post glacial decay Times: Application to RSL variations in N.E. Hudson Bay , 1993 .

[26]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[27]  W. R. Peltier,et al.  Postglacial variations in the level of the sea: Implications for climate dynamics and solid‐Earth geophysics , 1998 .

[28]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[29]  W. Peltier,et al.  Plate tectonics and aspherical earth structure: The Importance of poloidal‐toroidal coupling , 1987 .

[30]  Lars Stixrude,et al.  Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale , 2000 .

[31]  B. Hager,et al.  Inversion for mantle viscosity profiles constrained by dynamic topography and the geoid, and their estimated errors , 2000 .

[32]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[33]  J. Mitrovica,et al.  The sensitivity of glacial isostatic adjustment predictions to a low-viscosity layer at the base of the upper mantle , 1998 .

[34]  W. Peltier New constraints on transient lower mantle rheology and internal mantle buoyancy from glacial rebound data , 1985, Nature.

[35]  Mark A. Richards,et al.  Effect of depth-dependent viscosity on the planform of mantle convection , 1996, Nature.

[36]  J. Mitrovica,et al.  Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial , 1997 .

[37]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[38]  C. Froidevaux,et al.  Geoid heights and lithospheric stresses for a dynamic Earth. , 1984 .

[39]  H. Gams Die Geschichte der Ostsee , 1929 .

[40]  M. Nakada RHEOLOGICAL STRUCTURE OF THE EARTH'S MANTLE DERIVED FROM GLACIAL REBOUND IN LAURENTIDE , 1983 .

[41]  J. Mitrovica,et al.  A revised relaxation-time spectrum for Fennoscandia , 1999 .

[42]  W. Peltier,et al.  The Kinematics and Dynamics of Poloidal–Toroidal Coupling in Mantle Flow: The Importance of Surface Plates and Lateral Viscosity Variations , 1994 .

[43]  A. Forte,et al.  Seismic‐geodynamic constraints on three‐dimensional structure, vertical flow, and heat transfer in the mantle , 1997 .

[44]  B. Hager,et al.  Geoid Anomalies in a Dynamic Earth , 1984 .

[45]  D. Yuen,et al.  Viscosity stratification of the lower mantle as inferred by the j2 observation. , 1985 .

[46]  Wei-jia Su,et al.  Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle , 1997 .

[47]  D. Yuen,et al.  The effects of transient rheology on the interpretation of lower mantle viscosity , 1985 .

[48]  Robert W. Clayton,et al.  Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid , 1989 .

[49]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load , 1935 .

[50]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[51]  W. Peltier,et al.  ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of po , 1991 .

[52]  R. Peltier,et al.  Viscous flow models of global geophysical observables: 1. Forward problems , 1991 .