A piezogravimetric sensor platform for sensitive detection of lead (II) ions in water based on calix[4]resorcinarene macrocycles: Synthesis, characterization and detection

[1]  H. Karimi-Maleh,et al.  The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. , 2019, Journal of colloid and interface science.

[2]  H. Karimi-Maleh,et al.  3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor , 2019, Composites Part B: Engineering.

[3]  L. Eddaif,et al.  Calix[4]resorcinarene macrocycles , 2019, Journal of Thermal Analysis and Calorimetry.

[4]  L. Eddaif,et al.  Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review , 2019, International Journal of Environmental Analytical Chemistry.

[5]  Vinod K. Gupta,et al.  A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: Experimental and docking theoretical investigations , 2019, Sensors and Actuators B: Chemical.

[6]  L. Eddaif,et al.  Application of Calixresorcinarenes as Chemical Sensors , 2019, Proceedings of 1st Coatings and Interfaces Web Conference.

[7]  A. Abbaspourrad,et al.  A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode , 2019, New Journal of Chemistry.

[8]  B. Péter,et al.  In situ viscoelastic properties and chain conformations of heavily hydrated carboxymethyl dextran layers: a comparative study using OWLS and QCM-I chips coated with waveguide material , 2018, Scientific Reports.

[9]  S. Ahmad,et al.  An Electrochemical Sensing Platform for the Detection of Lead Ions Based on Dicarboxyl‐Calix[4]arene , 2018 .

[10]  H. Nalwa,et al.  Flexible Graphene-Based Wearable Gas and Chemical Sensors. , 2017, ACS applied materials & interfaces.

[11]  Xiaqing Wu,et al.  Molecular imprinting: perspectives and applications. , 2016, Chemical Society reviews.

[12]  P. Deininger,et al.  Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes , 2016, PloS one.

[13]  John Bosco Balaguru Rayappan,et al.  A review on detection of heavy metal ions in water – An electrochemical approach , 2015 .

[14]  Lingxin Chen,et al.  "One-drop-of-blood" electroanalysis of lead levels in blood using a foam-like mesoporous polymer of melamine-formaldehyde and disposable screen-printed electrodes. , 2015, The Analyst.

[15]  Lutfullah,et al.  Zirconium(IV) phosphosulphosalicylate-based ion selective membrane electrode for potentiometric determination of Pb(II) ions , 2015 .

[16]  V. Kalchenko,et al.  Upper-rim calixarene phosphines consisting of multiple lower-rim OH functional groups: synthesis and characterisation , 2014 .

[17]  M. Oltean,et al.  Reversible dimerization of viologen radicals covalently linked to a calixarene platform: Experimental and theoretical aspects , 2014 .

[18]  K. Szeto,et al.  Preparation and characterization of metallacalixarenes anchored to a mesoporous silica SBA-15 LP as potential catalysts , 2014 .

[19]  M. Rebarz,et al.  Revisited photophysics and photochemistry of a Ru-TAP complex using chloride ions and a calix[6]crypturea. , 2014, Inorganic chemistry.

[20]  Xianliang Cao,et al.  Synthesis of calix[4]arene derivatives via a Pd-catalyzed Sonogashira reaction and their recognition properties towards phenols , 2014 .

[21]  Lingxin Chen,et al.  Novel Pb2+ ion imprinted polymers based on ionic interaction via synergy of dual functional monomers for selective solid-phase extraction of Pb2+ in water samples. , 2014, ACS applied materials & interfaces.

[22]  A. Gulino,et al.  A Viable Route for Lithium Ion Detection , 2014 .

[23]  A. Gulino,et al.  A Viable Route for Lithium Ion Detection (Eur. J. Inorg. Chem. 3/2014) , 2014 .

[24]  M. Echabaane,et al.  Studies of aluminum (III) ion-selective optical sensor based on a chromogenic calix[4]arene derivative. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[25]  V. Azov,et al.  Rationally designed calix[4]arene-pyrrolotetrathiafulvalene receptors for electron-deficient neutral guests. , 2013, The Journal of organic chemistry.

[26]  Nianqiang Wu,et al.  Nanostructured Sensors for Detection of Heavy Metals: A Review , 2013 .

[27]  P. Prasad,et al.  Determination of Heavy Metals in Ground Water by Icp-MS in Selected Coastal Areas of Spsr Nellore District, Andhra Pradesh, India , 2012 .

[28]  I. Palchetti,et al.  Dipyridine‐Containing Macrocyclic Polyamine – Nafion‐Modified Screen‐Printed Carbon Electrode for Voltammetric Detection of Lead , 2012 .

[29]  Zhaopeng Chen,et al.  "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. , 2012, ACS applied materials & interfaces.

[30]  R. A. Mohamed,et al.  Determination of trace elements in water and sediment samples from Ismaelia Canal using ion chromatography and atomic absorption spectroscopy , 2012 .

[31]  I. Fragalà,et al.  Sensing of linear alkylammonium ions by a 5-pyrenoylamido-calix[5]arene solution and monolayer using luminescence measurements , 2012 .

[32]  H. Ouada,et al.  Impedance spectroscopic investigation of the effect of thin azo-calix[4]arene film type on the cation sensitivity of the gold electrodes , 2011 .

[33]  Luciana Sartore,et al.  Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection. , 2011, Sensors and actuators. B, Chemical.

[34]  Zhaopeng Chen,et al.  Blue-to-red colorimetric sensing strategy for Hg²⁺ and Ag⁺ via redox-regulated surface chemistry of gold nanoparticles. , 2011, ACS applied materials & interfaces.

[35]  K. Sharma,et al.  Calixarene based chemical sensors , 2011 .

[36]  S. Flora,et al.  Chelation in Metal Intoxication , 2010, International journal of environmental research and public health.

[37]  Y. Chai,et al.  A new aluminum(III)-selective potentiometric sensor based on N,N′-propanediamide bis(2-salicylideneimine) as a neutral carrier , 2010 .

[38]  B. Ye,et al.  Simultaneous Determination of Thallium and Lead on a Chemically Modified Electrode with Langmuir - Blodgett Film of a p-tert-Butylcalix(4)arene Derivative , 2009 .

[39]  Matthew C. Dixon,et al.  Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. , 2008, Journal of biomolecular techniques : JBT.

[40]  Christopher M.A. Brett,et al.  Electrochemical sensors for environmental monitoring. Strategy and examples , 2001 .

[41]  D. Diamond,et al.  Peer Reviewed: Calixarenes: Designer Ligands for Chemical Sensors , 2001 .

[42]  Kazuaki Ito,et al.  Synthesis and properties of sulfur-bridged analogs of p-tert-Butylcalix[4]arene☆ , 1997 .

[43]  Bengt Herbert Kasemo,et al.  A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance , 1996 .

[44]  R. S. Houk,et al.  Inductively-coupled plasma mass spectrometry (ICP-MS) , 1985 .