High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2

We report on thermoelectric properties of p-type AgSbTe2 bulk material with an in situ forming nanostructured Ag2Te phase that was prepared by combining a sonochemical method and spark plasma sintering. In order to control the density of nanodots, we synthesized samples with compositions (Ag2Te)x(Sb2Te3)100−x (x = 44∼54) and investigated their thermoelectric performance in the temperature range from 300 K to 600 K. Microstructure analysis shows that nanoparticles of Ag2Te with the size ranging from 10 nm to 50 nm are evenly embedded in the matrix. Transport measurements obtained on these samples demonstrate high power factors and low thermal conductivity and, consequently, an enhanced thermoelectric figure of merit ZT. Samples with compositions x = 48 and 50 reach power factors of ∼1.5 mW m−1 K−2 at about 400–500 K, while the thermal conductivity in this temperature range is about 0.6 W m−1 K−1. The best performance is obtained on a sample with x = 50 (AgSbTe2) where the ZT reaches 1.55 at 533 K, the value higher than for samples prepared by other methods over the same temperature range.

[1]  J. Heremans,et al.  Measurements of the energy band gap and valence band structure of AgSbTe 2 , 2008 .

[2]  Yong Liu,et al.  Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes , 2008 .

[3]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[4]  Youdou Zheng,et al.  Size-controllable sonochemical synthesis of thermoelectric material of Bi 2 Se 3 nanocrystals , 2004 .

[5]  K. Wojciechowski,et al.  Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system , 2009 .

[6]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[7]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[8]  Jonathan D'Angelo,et al.  Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag(Pb1 – ySny)mSbTe2 + m , 2006 .

[9]  T. Zhu,et al.  Aqueous chemical reduction synthesis of Bi2Te3 nanowires with surfactant assistance , 2006 .

[10]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[11]  Donald T. Morelli,et al.  Thermopower Enhancement in PbTe with Pb Precipitates , 2005 .

[12]  A. Katsui,et al.  Phase diagram and thermoelectric properties of Ag3−xSb1+xTe4 system , 2004 .

[13]  J. Tu,et al.  Sonochemical synthesis of nanocrystalline Bi2Te3 thermoelectric compounds , 2005 .

[14]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[15]  P. Zhu,et al.  Preparation and transport properties of AgSbTe2 by high-pressure and high-temperature , 2008 .

[16]  Hong-an Ma,et al.  HPHT synthesis and electrical properties of AgSbTe2–Ag2Te thermoelectric alloys , 2008 .

[17]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[18]  Mercouri G Kanatzidis,et al.  Chemical routes to nanocrystalline thermoelectrically relevant AgPb(m)SbTe(m+2) materials. , 2006, Journal of the American Chemical Society.

[19]  Min Zhou,et al.  High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .

[20]  P. Riesz,et al.  Free radical formation induced by ultrasound and its biological implications. , 1992, Free radical biology & medicine.

[21]  M. Kanatzidis,et al.  First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe 2 , 2008 .

[22]  Hong Liu,et al.  Sonochemical synthesis of bismuth selenide nanobelts at room temperature , 2004 .

[23]  K. Suslick,et al.  Interparticle collisions driven by ultrasound. , 1990, Science.

[24]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[25]  M. J. Kramer,et al.  Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material , 2007 .

[26]  Matthew J. Kramer,et al.  Analysis of Nanostructuring in High Figure‐of‐Merit Ag1–xPbmSbTe2+m Thermoelectric Materials , 2009 .

[27]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[28]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[29]  M. Kanatzidis,et al.  Nanocrystals of the Quaternary Thermoelectric Materials: AgPbmSbTem+2 (m = 1–18): Phase‐Segregated or Solid Solutions? , 2008 .

[30]  W. Ao,et al.  Hydrothermal synthesis of nano-sized AgPb18SbTe20 thermoelectric powders , 2009 .

[31]  Aharon Gedanken,et al.  Using sonochemistry for the fabrication of nanomaterials. , 2004, Ultrasonics sonochemistry.

[32]  Y. Qian,et al.  Sonochemical synthesis of nanocrystalline silver tellurides Ag2Te and Ag7Te4 , 2001 .

[33]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[34]  Yongjun Tian,et al.  Enhanced thermoelectric performance of AgSbTe2 synthesized by high pressure and high temperature , 2009 .

[35]  A. Weiss,et al.  Preparation and Characterization of Ag2E (E = Se, Te) Using the Sonochemically Assisted Polyol Method , 2002 .

[36]  T. Sun,et al.  Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials , 2008, Nanotechnology.

[37]  Pierre F. P. Poudeu,et al.  High figure of merit in nanostructured n-type KPbmSbTe m+2 thermoelectric materials , 2010 .

[38]  D. Medlin,et al.  Precipitation of Ag2Te in the thermoelectric material AgSbTe2 , 2009 .

[39]  J. Toboła,et al.  Crystal structure, electronic and transport properties of AgSbSe2 and AgSbTe2 , 2008 .

[40]  Ctirad Uher,et al.  Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. , 2008, Angewandte Chemie.

[41]  M. Kanatzidis,et al.  Multifold enhancement of the thermoelectric figure of merit in p-type BaBiTe3 by pressure tuning , 2001 .

[42]  Heng Wang,et al.  Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound , 2008 .