A pattern‐search‐based inverse method

[1] Uncertainty in model predictions is caused to a large extent by the uncertainty in model parameters, while the identification of model parameters is demanding because of the inherent heterogeneity of the aquifer. A variety of inverse methods has been proposed for parameter identification. In this paper we present a novel inverse method to constrain the model parameters (hydraulic conductivities) to the observed state data (hydraulic heads). In the method proposed we build a conditioning pattern consisting of simulated model parameters and observed flow data. The unknown parameter values are simulated by pattern searching through an ensemble of realizations rather than optimizing an objective function. The model parameters do not necessarily follow a multi-Gaussian distribution, and the nonlinear relationship between the parameter and the response is captured by the multipoint pattern matching. The algorithm is evaluated in two synthetic bimodal aquifers. The proposed method is able to reproduce the main structure of the reference fields, and the performance of the updated model in predicting flow and transport is improved compared with that of the prior model.

[1]  Clayton V. Deutsch,et al.  FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems , 2002 .

[2]  P. Kitanidis,et al.  An Application of the Geostatistical Approach to the Inverse Problem in Two-Dimensional Groundwater Modeling , 1984 .

[3]  J. Jaime Gómez-Hernández,et al.  Groundwater flow inverse modeling in non-MultiGaussian media: Performance assessment of the normal-score Ensemble Kalman Filter , 2011 .

[4]  Bernhard Schölkopf,et al.  Iterative kernel principal component analysis for image modeling , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[6]  Y. Rubin,et al.  A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields , 2010 .

[7]  Pau Arbués,et al.  A geostatistical algorithm to reproduce lateral gradual facies transitions: Description and implementation , 2009, Comput. Geosci..

[8]  A. Journel,et al.  The Necessity of a Multiple-Point Prior Model , 2007 .

[9]  L. Y. Hu,et al.  Multiple‐point geostatistics for modeling subsurface heterogeneity: A comprehensive review , 2008 .

[10]  Yan Chen,et al.  Data assimilation for transient flow in geologic formations via ensemble Kalman filter , 2006 .

[11]  L. Hu Gradual Deformation and Iterative Calibration of Gaussian-Related Stochastic Models , 2000 .

[12]  Liangping Li,et al.  Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media , 2011 .

[13]  Liangping Li,et al.  A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA) , 2011 .

[14]  A. Sahuquillo,et al.  Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory , 1997 .

[15]  Jef Caers,et al.  Geostatistical History Matching Under Training-Image Based Geological Model Constraints , 2002 .

[16]  P. Renard,et al.  Dealing with spatial heterogeneity , 2005 .

[17]  J. Jaime Gómez-Hernández,et al.  Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter , 2012, Mathematical Geosciences.

[18]  Andrés Sahuquillo,et al.  Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data , 2003 .

[19]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .

[20]  Carlos Llopis-Albert,et al.  Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory , 2009 .

[21]  Behnam Jafarpour,et al.  A Probability Conditioning Method (PCM) for Nonlinear Flow Data Integration into Multipoint Statistical Facies Simulation , 2011 .

[22]  G. Marsily,et al.  An Automatic Solution for the Inverse Problem , 1971 .

[23]  R. M. Srivastava,et al.  Multivariate Geostatistics: Beyond Bivariate Moments , 1993 .

[24]  Philippe Renard,et al.  Issues in characterizing heterogeneity and connectivity in non-multiGaussian media , 2008 .

[25]  E. G. Vomvoris,et al.  A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .

[26]  M. Marietta,et al.  Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments , 1995 .

[27]  C. Llopis-Albert,et al.  Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 2. Demonstration on a synthetic aquifer , 2009 .

[28]  G. Caumon,et al.  ODSIM: An Object-Distance Simulation Method for Conditioning Complex Natural Structures , 2010 .

[29]  D. Oliver,et al.  Markov chain Monte Carlo methods for conditioning a permeability field to pressure data , 1997 .

[30]  Andres Alcolea,et al.  Pilot points method incorporating prior information for solving the groundwater flow inverse problem , 2006 .

[31]  A. Dassargues,et al.  Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium) , 2009 .

[32]  Peter K. Kitanidis,et al.  On Stochastic Inverse Modeling , 2013 .

[33]  W. Kinzelbach,et al.  Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem , 2008 .

[34]  Gregoire Mariethoz,et al.  The Direct Sampling method to perform multiple‐point geostatistical simulations , 2010 .

[35]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[36]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[37]  Philippe Renard,et al.  Blocking Moving Window algorithm: Conditioning multiple‐point simulations to hydrogeological data , 2010 .

[38]  L. Feyen,et al.  Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations , 2006 .

[39]  A Blocking Markov Chain Monte Carlo Method for Inverse Stochastic Hydrogeological Modeling , 2009 .

[40]  Peter K. Kitanidis,et al.  Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .

[41]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[42]  G. Mariéthoz,et al.  Bayesian inverse problem and optimization with iterative spatial resampling , 2010 .

[43]  Philip John Binning,et al.  Using time‐lapse gravity for groundwater model calibration: An application to alluvial aquifer storage , 2011 .

[44]  J. Caers,et al.  The Probability Perturbation Method: A New Look at Bayesian Inverse Modeling , 2006 .

[45]  Liangping Li,et al.  An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering , 2011 .

[46]  J. Caers,et al.  A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems , 2008 .

[47]  Paul Switzer,et al.  Filter-Based Classification of Training Image Patterns for Spatial Simulation , 2006 .

[48]  J. Caers,et al.  Conditional Simulation with Patterns , 2007 .

[49]  Jef Caers,et al.  Efficient gradual deformation using a streamline-based proxy method , 2003 .

[50]  S. P. Neuman Calibration of distributed parameter groundwater flow models viewed as a multiple‐objective decision process under uncertainty , 1973 .

[51]  A. S. Cullick,et al.  A program to create permeability fields that honor single-phase flow rate and pressure data , 1999 .

[52]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[53]  Harihar Rajaram,et al.  Differences in the scale dependence of dispersivity and retardation factors estimated from forced‐gradient and uniform flow tracer tests in three‐dimensional physically and chemically heterogeneous porous media , 2005 .

[54]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .