A Tensile Model for the Interpretation of Microseismic Events near Underground Openings

For small-scale microseismic events, the source sizes provided by shear models are unrealistically large when compared to visual observations of rock fractures near underground openings. A detailed analysis of the energy components in data from a mine-by experiment and from some mines showed that there is a depletion of S-wave energy for events close to the excavations, indicating that tensile cracking is the dominant mechanism in these microseismic events.

[1]  J. B. Martino,et al.  Observations of brittle failure around a circular test tunnel , 1997 .

[2]  Z. T. Bieniawski,et al.  Mechanism of brittle fracture of rockPart Itheory of the fracture process , 1967 .

[3]  O. Zienkiewicz,et al.  Rock mechanics in engineering practice , 1968 .

[4]  M. Randall The spectral theory of seismic sources , 1973, Bulletin of the Seismological Society of America.

[5]  B. J. Carter,et al.  Criteria for brittle fracture in compression , 1990 .

[6]  A. McGarr,et al.  SOME APPLICATIONS OF SEISMIC SOURCE MECHANISM STUDIES TO ASSESSING UNDERGROUND HAZARD. , 1984 .

[7]  R. Ewy,et al.  Deformation and fracture around cylindrical openings in rock—II. Initiation, growth and interaction of fractures , 1990 .

[8]  T. R. Stacey A simple extension strain criterion for fracture of brittle rock , 1981 .

[9]  S. J. Gibowicz,et al.  Source parameters of seismic events at the Underground Research Laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than −2 , 1991 .

[10]  N. A. Chandler,et al.  The progressive fracture of Lac du Bonnet granite , 1994 .

[11]  R. T. Ewy,et al.  DEFORMATION AND FRACTURE AROUND CYLINDRICAL OPENINGS IN ROCK - I. OBSERVATIONS AND ANALYSIS OF DEFORMATIONS , 1990 .

[12]  C. Martin,et al.  Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength , 1997 .

[13]  Evert Hoek,et al.  Rock fracture under static stress conditions , 1965 .

[14]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[15]  Teng-fong Wong,et al.  MICROMECHANICS OF FAULTING IN WESTERLY GRANITE , 1982 .

[16]  R. Paul Young,et al.  Moment tensor inversion of induced microseisnmic events: Evidence of non-shear failures in the -4 < M < -2 moment magnitude range , 1992 .

[17]  P. K. Kaiser,et al.  Scaling Laws for the Design of Rock Support , 1997 .

[18]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[19]  R. Madariaga Dynamics of an expanding circular fault , 1976, Bulletin of the Seismological Society of America.

[20]  James D. Byerlee,et al.  Chapter 1 Observations of Quasistatic Fault Growth from Acoustic Emissions , 1992 .

[21]  Larry R. Myer,et al.  Extensile Cracking in Porous Rock Under Differential Compressive Stress , 1992 .

[22]  J. Brune Tectonic stress and the spectra of seismic shear waves from earthquakes , 1970 .

[23]  E. Wainwright,et al.  Rockbursts and Seismicity in Mines , 1984 .

[24]  C. Scholz,et al.  Dilatancy in the fracture of crystalline rocks , 1966 .

[25]  R. P. Young,et al.  Microseismic monitoring in highly stressed granite: relation between shaft-wall cracking and in Situ stress , 1992 .

[26]  Quantitative Seismology and Rockmass Stability , 1997 .

[27]  Sia Nemat-Nasser,et al.  Compression‐induced microcrack growth in brittle solids: Axial splitting and shear failure , 1985 .

[28]  R. P. Young,et al.  Source parameters of mining-induced seismic events: An evaluation of homogeneous and inhomogeneous faulting models for assessing damage potential , 1995 .

[29]  Jon B. Fletcher,et al.  The partition of radiated energy between P and S waves , 1984 .

[30]  P. K. Kaiser,et al.  Hoek-Brown parameters for predicting the depth of brittle failure around tunnels , 1999 .

[31]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[32]  Bezalel C. Haimson,et al.  Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism , 1993 .