Structural Properties of Dynamic Systems Biology Models: Identifiability, Reachability, and Initial Conditions

Abstract: Dynamic modelling is a powerful tool for studying biological networks. Reachability (controllability), observability, and structural identifiability are classical system-theoretic properties of dynamical models. A model is structurally identifiable if the values of its parameters can in principle be determined from observations of its outputs. If model parameters are considered as constant state variables, structural identifiability can be studied as a generalization of observability. Thus, it is possible to assess the identifiability of a nonlinear model by checking the rank of its augmented observability matrix. When such rank test is performed symbolically, the result is of general validity for almost all numerical values of the variables. However, for special cases, such as specific values of the initial conditions, the result of such test can be misleading—that is, a structurally unidentifiable model may be classified as identifiable. An augmented observability rank test that specializes the symbolic states to particular numerical values can give hints of the existence of this problem. Sometimes it is possible to find such problematic values analytically, or via optimization. This manuscript proposes procedures for performing these tasks and discusses the relation between loss of identifiability and loss of reachability, using several case studies of biochemical networks.

[1]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[2]  R. Bellman,et al.  On structural identifiability , 1970 .

[3]  Joseph J. DiStefano,et al.  On the relationships between structural identifiability and the controllability, observability properties , 1977 .

[4]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[5]  Further comments on "On the relationships between structural identifiability and the controllability, observability properties" , 1978 .

[6]  Claudio Cobelli,et al.  Comments on "On the relationships between structural identifiability and the controllability, observability properties" , 1978 .

[7]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[8]  T. Tarn,et al.  New results for identifiability of nonlinear systems , 1987 .

[9]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[10]  K R Godfrey,et al.  Structural identifiability of the parameters of a nonlinear batch reactor model. , 1992, Mathematical biosciences.

[11]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[12]  Ghislaine Joly-Blanchard,et al.  Some effective approaches to check the identifiability of uncontrolled nonlinear systems , 2001 .

[13]  Alexandre Sedoglavic A Probabilistic Algorithm to Test Local Algebraic Observability in Polynomial Time , 2002, J. Symb. Comput..

[14]  Maria Pia Saccomani,et al.  Parameter identifiability of nonlinear systems: the role of initial conditions , 2003, Autom..

[15]  Xiaohua Xia,et al.  Identifiability of nonlinear systems with application to HIV/AIDS models , 2003, IEEE Trans. Autom. Control..

[16]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[17]  Maria Pia Saccomani,et al.  Identifiability of Nonaccessible Nonlinear Systems , 2009 .

[18]  Antonis Papachristodoulou,et al.  A New Computational Tool for Establishing Model Parameter Identifiability , 2009, J. Comput. Biol..

[19]  Eva Balsa-Canto,et al.  An iterative identification procedure for dynamic modeling of biochemical networks , 2010, BMC Systems Biology.

[20]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[21]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[22]  Johan Karlsson,et al.  An Efficient Method for Structural Identifiability Analysis of Large Dynamic Systems , 2012 .

[23]  Jeremy L. Muhlich,et al.  Properties of cell death models calibrated and compared using Bayesian approaches , 2013, Molecular systems biology.

[24]  David Henriques,et al.  MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics , 2013, BMC Bioinformatics.

[25]  Joseph J. DiStefano,et al.  Dynamic Systems Biology Modeling and Simulation , 2015 .

[26]  Andrew W. Smyth,et al.  On the observability and identifiability of nonlinear structural and mechanical systems , 2015 .

[27]  Ryan N. Gutenkunst,et al.  Sloppiness and the Geometry of Parameter Space , 2016 .

[28]  Antonis Papachristodoulou,et al.  Structural Identifiability of Dynamic Systems Biology Models , 2016, PLoS Comput. Biol..

[29]  Alejandro F. Villaverde,et al.  Identifiability of large nonlinear biochemical networks , 2016 .