Holographic entanglement renormalization of topological insulators

We study the real-space entanglement renormalization group flows of topological band insulators in (2+1) dimensions by using the continuum multiscale entanglement renormalization ansatz (cMERA). Given the ground state of a Chern insulator, we construct and study its cMERA by paying attention, in particular, to how the bulk holographic geometry and the Berry curvature depend on the topological properties of the ground state. It is found that each state defined at different energy scale of cMERA carries a nonzero Berry flux, which is emanated from the UV layer of cMERA, and flows towards the IR. Hence, a topologically nontrivial UV state flows under the renormalization group to an IR state, which is also topologically nontrivial. On the other hand, we found that there is an obstruction to construct the exact ground state of a topological insulator with a topologically trivial IR state. That is, if we try to construct a cMERA for the ground state of a Chern insulator by taking a topologically trivial IR state, the resulting cMERA does not faithfully reproduce the exact ground state at all length scales.

[1]  James Sully,et al.  Tensor networks from kinematic space , 2015, 1512.01548.

[2]  H. Ooguri,et al.  Bulk locality and boundary creating operators , 2015, 1507.04130.

[3]  T. Takayanagi,et al.  Continuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State Correspondence. , 2015, Physical review letters.

[4]  James Sully,et al.  Integral geometry and holography , 2015, 1505.05515.

[5]  H. Verlinde Poking Holes in AdS/CFT: Bulk Fields from Boundary States , 2015, 1505.05069.

[6]  Ning Bao,et al.  Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence , 2015, 1504.06632.

[7]  Ning Bao,et al.  Consistency Conditions for an AdS/MERA Correspondence , 2015, 1504.06632.

[8]  Xiao-Liang Qi,et al.  Exact holographic mapping in free fermion systems , 2015, 1503.08592.

[9]  T. Takayanagi,et al.  Surface/State Correspondence as a Generalized Holography , 2015, 1503.03542.

[10]  Tadashi Takayanagi,et al.  Boundary states as holographic duals of trivial spacetimes , 2014, 1412.6226.

[11]  John McGreevy,et al.  Renormalization group constructions of topological quantum liquids and beyond , 2014, 1407.8203.

[12]  Á. Rivas,et al.  Two-dimensional density-matrix topological fermionic phases: topological Uhlmann numbers. , 2014, Physical review letters.

[13]  D. Arovas,et al.  Topological indices for open and thermal systems via Uhlmann's phase. , 2014, Physical review letters.

[14]  J. Cirac,et al.  Symmetries and boundary theories for chiral projected entangled pair states , 2014, 1405.0447.

[15]  Tadashi Takayanagi,et al.  Holographic geometry of cMERA for quantum quenches and finite temperature , 2013, 1311.6095.

[16]  Xiao-Liang Qi,et al.  Exact holographic mapping and emergent space-time geometry , 2013, 1309.6282.

[17]  Á. Rivas,et al.  Uhlmann phase as a topological measure for one-dimensional fermion systems. , 2013, Physical review letters.

[18]  J I Cirac,et al.  Projected entangled-pair states can describe chiral topological states. , 2013, Physical review letters.

[19]  N. Read,et al.  Tensor network trial states for chiral topological phases in two dimensions , 2013, 1307.7726.

[20]  Sukhwinder Singh,et al.  Symmetry protected entanglement renormalization , 2013, 1303.6716.

[21]  J. Maldacena,et al.  Time evolution of entanglement entropy from black hole interiors , 2013, 1303.1080.

[22]  Masahiro Nozaki,et al.  Holographic geometry of entanglement renormalization in quantum field theories , 2012, 1208.3469.

[23]  K. Okunishi Wilson's numerical renormalization group and AdS_3 geometry , 2012, 1208.1645.

[24]  H. Matsueda Scaling of entanglement entropy and hyperbolic geometry , 2011, 1112.5566.

[25]  J. Molina-Vilaplana Connecting entanglement renormalization and gauge/gravity dualities , 2011, 1109.5592.

[26]  Guifre Vidal,et al.  Quantum Criticality with the Multi-scale Entanglement Renormalization Ansatz , 2011, 1109.5334.

[27]  Pasquale Sodano,et al.  Holographic view on quantum correlations and mutual information between disjoint blocks of a quantum critical system , 2011, 1108.1277.

[28]  F. Verstraete,et al.  Entanglement renormalization for quantum fields in real space. , 2011, Physical review letters.

[29]  M. Raamsdonk,et al.  BUILDING UP SPACE–TIME WITH QUANTUM ENTANGLEMENT , 2010 .

[30]  B. Swingle,et al.  Mutual information and the structure of entanglement in quantum field theory , 2010, 1010.4038.

[31]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[32]  S. Matsuura,et al.  Momentum space metric, nonlocal operator, and topological insulators , 2010, 1007.2200.

[33]  M. Raamsdonk,et al.  Building up spacetime with quantum entanglement , 2010, 1005.3035.

[34]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[35]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[36]  T. Takayanagi,et al.  Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy , 2009, 0901.0924.

[37]  G. Evenbly,et al.  Entanglement renormalization in two spatial dimensions. , 2008, Physical review letters.

[38]  R. Pfeifer,et al.  Entanglement renormalization, scale invariance, and quantum criticality , 2008, 0810.0580.

[39]  G. Vidal,et al.  Exact entanglement renormalization for string-net models , 2008, 0806.4583.

[40]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[41]  G. Vidal,et al.  Entanglement renormalization and topological order. , 2007, Physical review letters.

[42]  Lukasz Cincio,et al.  Multiscale entanglement renormalization ansatz in two dimensions: quantum Ising model. , 2007, Physical review letters.

[43]  G. Evenbly,et al.  Entanglement renormalization in noninteracting fermionic systems , 2007, 0710.0692.

[44]  G. Evenbly,et al.  Algorithms for entanglement renormalization , 2007, 0707.1454.

[45]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[46]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[47]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[48]  X. Wen Projective construction of non-Abelian quantum Hall liquids , 1998, cond-mat/9811111.

[49]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .

[50]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[51]  D. E. Aspnes,et al.  Static Phenomena Near Critical Points: Theory and Experiment , 1967 .