GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides

[1]  T. Gu,et al.  First-principles simulations on bulk Ta2O5 and Cu/Ta2O5/Pt heterojunction: Electronic structures and transport properties , 2009 .

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  X. Miao,et al.  Oxygen vacancy chain and conductive filament formation in hafnia , 2018 .

[4]  H. Wong,et al.  $\hbox{Al}_{2}\hbox{O}_{3}$-Based RRAM Using Atomic Layer Deposition (ALD) With 1-$\mu\hbox{A}$ RESET Current , 2010, IEEE Electron Device Letters.

[5]  E. Caetano,et al.  Elucidating the high-k insulator α-Al2O3 direct/indirect energy band gap type through density functional theory computations , 2015 .

[6]  Yawar Abbas,et al.  Compliance-Free, Digital SET and Analog RESET Synaptic Characteristics of Sub-Tantalum Oxide Based Neuromorphic Device , 2018, Scientific Reports.

[7]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[8]  R. Bartynski,et al.  BAND ALIGNMENT ISSUES RELATED TO HFO2 /SIO2 /P-SI GATE STACKS , 2004 .

[9]  W. Schmidt,et al.  The electronic structure and optical response of rutile, anatase and brookite TiO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[12]  Luping Shi,et al.  Identifying and Engineering the Electronic Properties of the Resistive Switching Interface , 2016, Journal of Electronic Materials.

[13]  M. Grüning,et al.  Local-field and excitonic effects in the optical response of α -alumina , 2011 .

[14]  Efficient index handling of multidimensional periodic boundary conditions , 2001, cond-mat/0104182.

[15]  R. Leonelli,et al.  Optical properties of rutile near its fundamental band gap. , 1995, Physical review. B, Condensed matter.

[16]  S. Murugesan,et al.  Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition , 2010 .

[17]  Vladan Stevanović,et al.  Convergence of density and hybrid functional defect calculations for compound semiconductors , 2013 .

[18]  Seong-Geon Park,et al.  First-principles study of resistance switching in rutile TiO2 with oxygen vacancy , 2008, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[19]  R. Armiento,et al.  Functional designed to include surface effects in self-consistent density functional theory , 2005 .

[20]  A. Pasquarello,et al.  Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory , 2012 .

[21]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[22]  X. A. Tran,et al.  Oxide-based RRAM: Unified microscopic principle for both unipolar and bipolar switching , 2011, 2011 International Electron Devices Meeting.

[23]  X. Miao,et al.  Improved LDA-1/2 method for band structure calculations in covalent semiconductors , 2018, Computational Materials Science.

[24]  Lara K. Teles,et al.  Approximation to density functional theory for the calculation of band gaps of semiconductors , 2008, 0808.0729.

[25]  Lattice and electronic effects in rutile TiO 2 containing charged oxygen defects from ab initio calculations , 2009 .

[26]  D. Brandon,et al.  Metastable alumina polymorphs : Crystal structures and transition sequences , 2005 .

[27]  S. Abrahams,et al.  Rutile: Normal Probability Plot Analysis and Accurate Measurement of Crystal Structure , 1971 .

[28]  Seong-Geon Park,et al.  Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2 resistive memory , 2013 .

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[30]  A. Sokolov,et al.  Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors , 2018 .

[31]  David J. Jones,et al.  Interband Electronic Structure of α‐Alumina up to 2167 K , 1994 .

[32]  Insung Kim,et al.  Asymmetric bipolar resistive switching in solution-processed Pt/TiO2/W devices , 2010 .

[33]  Kyeong-Sik Min,et al.  A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications , 2017 .

[34]  X. Guan,et al.  Dynamic Modeling and Atomistic Simulations of SET and RESET Operations in $\hbox{TiO}_{2}$-Based Unipolar Resistive Memory , 2011, IEEE Electron Device Letters.

[35]  J. Robertson,et al.  Screened exchange density functional applied to solids , 2010 .

[36]  Yoshio Nishi,et al.  Electronic correlation effects in reduced rutile TiO 2 within the LDA+U method , 2010 .

[37]  G. Molas,et al.  Grain boundary composition and conduction in HfO2: An ab initio study , 2013 .

[38]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[39]  Alfredo Pasquarello,et al.  Defect levels of dangling bonds in silicon and germanium through hybrid functionals , 2008 .

[40]  Gerard Ghibaudo,et al.  A Combined Ab Initio and Experimental Study on the Nature of Conductive Filaments in ${\rm Pt}/{\rm Hf}{\rm O}_{2}/{\rm Pt}$ Resistive Random Access Memory , 2014, IEEE Transactions on Electron Devices.

[41]  G. Heger,et al.  Laboratory X-ray powder diffraction: a comparison of different geometries with special attention to the usage of the Cu Kα doublet , 1999 .

[42]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[43]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[44]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[45]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[46]  O. Richard,et al.  Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory. , 2015, Nano letters.

[47]  J. Robertson,et al.  Ab initio calculations of materials selection of oxides for resistive random access memories , 2015 .

[48]  J. R. Leite,et al.  Effects of the Coulomb Correlation on the Calculated Results for Atoms with and without Spin Polarization , 1971 .

[49]  P. Blaise,et al.  Prediction of semimetallic tetragonal Hf2O3 and Zr2O3 from first principles. , 2012, Physical review letters.

[50]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[51]  Viktor Mayer-Schnberger,et al.  Big Data: A Revolution That Will Transform How We Live, Work, and Think , 2013 .

[52]  Lifeng Liu,et al.  Direct Observations of Nanofilament Evolution in Switching Processes in HfO2‐Based Resistive Random Access Memory by In Situ TEM Studies , 2017, Advanced materials.

[53]  Roberto Bez,et al.  Introduction to flash memory , 2003, Proc. IEEE.

[54]  A. Pasquarello,et al.  Defect energy levels in density functional calculations: alignment and band gap problem. , 2008, Physical review letters.

[55]  Changqing Xie,et al.  Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): Polystyrenesulfonate thin film , 2009 .

[56]  Wilfried Vandervorst,et al.  Scalability of valence change memory: From devices to tip-induced filaments , 2016 .

[57]  S. Ashbrook,et al.  Neutron diffraction and MAS NMR of Cesium Tungstate defect pyrochlores , 2006 .

[58]  Nagarajan Raghavan,et al.  Conductive filament formation at grain boundary locations in polycrystalline HfO2 -based MIM stacks: Computational and physical insight , 2016, Microelectron. Reliab..

[59]  Luping Shi,et al.  The electronic structures of TiO2/Ti4O7, Ta2O5/TaO2 interfaces and the interfacial effects of dopants , 2015, 1507.04479.

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[62]  X. Miao,et al.  Filament-to-dielectric band alignments in $$\hbox {TiO}_{2}$$TiO2 and $$\hbox {HfO}_{2}$$HfO2 resistive RAMs , 2017 .

[63]  Lara K. Teles,et al.  Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors , 2011 .

[64]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[65]  S. Louie,et al.  Quasiparticle excitations and charge transition levels of oxygen vacancies in hafnia. , 2011, Physical review letters.

[66]  S. Louie,et al.  Structural properties and quasiparticle band structure of zirconia , 1998 .

[67]  Yuchao Yang,et al.  Probing nanoscale oxygen ion motion in memristive systems , 2017, Nature Communications.

[68]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[69]  M. Scheffler,et al.  Electronic band structure of zirconia and hafnia polymorphs from the GW perspective , 2010 .

[70]  A. Stesmans,et al.  Trap-assisted tunneling in high permittivity gate dielectric stacks , 2000 .

[71]  Xiangshui Miao,et al.  Intrinsic memristance mechanism of crystalline stoichiometric Ge2Sb2Te5 , 2013 .

[72]  W. Jang,et al.  Low-Power and Highly Reliable Multilevel Operation in $ \hbox{ZrO}_{2}$ 1T1R RRAM , 2011, IEEE Electron Device Letters.

[73]  Joonhee Kang,et al.  Oxygen-Deficient Zirconia (ZrO2−x): A New Material for Solar Light Absorption , 2016, Scientific Reports.

[74]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[75]  Chang Hwan Choi,et al.  Structural engineering of tantalum oxide based memristor and its electrical switching responses using rapid thermal annealing , 2018, Journal of Alloys and Compounds.

[76]  J. Pascual,et al.  Resolved Quadrupolar Transition in TiO 2 , 1977 .

[77]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[78]  Mikko Ritala,et al.  Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends , 2013 .

[79]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[80]  Saint John Walker Big Data: A Revolution That Will Transform How We Live, Work, and Think , 2014 .

[81]  Timothy Hughbanks,et al.  Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K , 1987 .