Lower mantle composition and temperature from mineral physics and thermodynamic modelling

SUMMARY A generalized inverse method is applied to infer the radial lower mantle composition and temperature profile from seismological models of density and bulk sound velocity. The computations are performed for a five-component system, MgO‐FeO‐CaO‐Al2O3‐SiO2 and three phases: (Mg,Fe,Al)(Si,Al)O3 perovskite, (Mg,Fe)O magnesiowustite, and CaSiO3 perovskite. A detailed review of the elasticity data set used to compute the elastic properties of mineral assemblages is given. We consider three different a priori compositional models—pyrolite, chondritic and a model based on cosmic abundances of elements—as a priori knowledge for the inversions in order to investigate the sensitivity of any given best-fit solution to the assumed initial composition. Consistent features in all inversions, independent of the a priori model, are a total iron content of X Fe � 0.10 ± 0.06 and a subadiabatic temperature gradient over most of the lower mantle depth range. A peculiar correlated behaviour of the two most sensitive parameters (iron content and temperature) is found below the 660 km discontinuity: over the depth range from 660 km down to 1300 km. Significantly, we find that the bulk composition inferred from any given inversion is strongly dependent on the choice of a priori model. Equally satisfactory fits to the lower mantle bulk sound velocity and density profiles can be obtained using any of the a priori models. However, the thermal structure associated with these compositional models differs significantly. Pyrolite yields a relatively cool geotherm (T 660 � 1800 K and X Pv � 0.64), while perovskite-rich models such as chondritic or cosmic models yield hot geotherms (T 660 � 2500 K and X Pv � 0.84 for the latter), but all of the geotherms are subadiabatic. The results of inversions are virtually unaffected by the partitioning of iron between perovskite and magnesiowustite. Out of the five oxide components considered in our models, the bulk Al2O3 and CaO contents of the mineral assemblages are least well constrained from our inversions. Our results show that a major shortcoming of lower mantle compositional and thermal models based on inversions of bulk sound velocity and density is the strong dependence of the final solution on the a priori model. That is, a wide variety of best-fit compositional and thermal models can be obtained, all of which provide satisfactory fits to global average seismic models. It is, in fact, this non-uniqueness that dominates the resulting a posteriori uncertainties and prevents a clear discrimination between different compositional models. Independent constraints on the thermal structure or on the shear properties of lower mantle assemblages are needed to infer lower mantle composition with a higher degree of certainty.

[1]  T. Kikegawa,et al.  Complicated effects of aluminum on the compressibility of silicate perovskite , 2004 .

[2]  J. Trampert,et al.  Towards a lower mantle reference temperature and composition , 2004 .

[3]  J. Bass,et al.  Sound velocities and elasticity of aluminous MgSiO3 perovskite: Implications for aluminum heterogeneity in Earth's lower mantle , 2004 .

[4]  H. Čížková,et al.  Layered convection with an interface at a depth of 1000 km: stability and generation of slab-like downwellings , 2004 .

[5]  S. Sinogeikin,et al.  Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy , 2004 .

[6]  Stefano de Gironcoli,et al.  Thermoelastic properties of MgSiO(3)-perovskite: insights on the nature of the Earth's lower mantle. , 2004, Physical review letters.

[7]  T. Katsura,et al.  Temperature derivatives of elastic moduli of MgSiO3 perovskite , 2004 .

[8]  J. Bass,et al.  Effect of aluminium on the compressibility of silicate perovskite , 2003 .

[9]  Guillaume Fiquet,et al.  Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity , 2003, Science.

[10]  I. Jackson,et al.  Anelasticity and microcreep in polycrystalline MgO at high temperature: an exploratory study , 2003 .

[11]  T. Ebisuzaki,et al.  Substitution mechanism of Al ions in MgSiO3 perovskite under high pressure conditions from first-principles calculations , 2003 .

[12]  A. Davaille,et al.  Geodynamics / GéodynamiqueThermal convection in a heterogeneous mantleConvection thermique dans un manteau hétérogène , 2003 .

[13]  Michael Le Bars,et al.  Thermal convection in a heterogeneous mantle , 2003 .

[14]  R. Cohen,et al.  Constraints on lower mantle composition from molecular dynamics simulations of MgSiO3 perovskite , 2002 .

[15]  F. Albarède,et al.  Zoned mantle convection , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Jianzhong Zhang,et al.  Elasticity of (Mg 0.83 , Fe 0.17 )O ferropericlase at high pressure: Ultrasonic measurements in conjunction with X-radiation techniques , 2002 .

[17]  T. Yagi,et al.  Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature , 2002 .

[18]  David A. Yuen,et al.  How flat is the lower-mantle temperature gradient? , 2002 .

[19]  L. Stixrude,et al.  Elasticity of (Mg,Fe)SiO3‐perovskite at high pressures , 2002 .

[20]  D. Frost,et al.  The effect of Al 2 O 3 on Fe-Mg partitioning between magnesiowüstite and magnesium silicate perovskite , 2002 .

[21]  R. Angel,et al.  Structure and elasticity of single‐crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry , 2002 .

[22]  N. Guignot,et al.  Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite , 2001 .

[23]  D. Dunlop,et al.  Beyond Néel's theories: thermal demagnetization of narrow-band partial thermoremanent magnetizations , 2001 .

[24]  M. Mezouar,et al.  Equation of state of Al‐bearing perovskite to lower mantle pressure conditions , 2001 .

[25]  F. D. Stacey,et al.  Compositional constraints on the equation of state and thermal properties of the lower mantle , 2001 .

[26]  Y. Ricard,et al.  Mixing properties in the Earth's mantle: Effects of the viscosity stratification and of oceanic crust segregation , 2001 .

[27]  H. Bunge,et al.  Non‐adiabaticity in mantle convection , 2001 .

[28]  D. Andrault Evaluation of (Mg,Fe) partitioning between silicate perovskite and magnesiowustite up to 120 GPa and 2300 K , 2001 .

[29]  J. Brodholt Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth's mantle , 2000, Nature.

[30]  T. Duffy,et al.  The equation of state of CaSiO3 perovskite to 108 GPa at 300 K , 2000 .

[31]  P. Tackley,et al.  Mantle convection and plate tectonics: toward an integrated physical and chemical theory , 2000, Science.

[32]  S. Sinogeikin,et al.  Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell , 2000 .

[33]  Jianzhong Zhang Effect of pressure on the thermal expansion of MgO up to 8.2 GPa , 2000 .

[34]  A. Dewaele,et al.  P‐V‐T equation of state of periclase from synchrotron radiation measurements , 2000 .

[35]  G. D. Price,et al.  The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite , 2000 .

[36]  M. Kunz,et al.  Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions , 2000 .

[37]  I. Daniel,et al.  A thermodynamic model for MgSiO3-perovskite derived from pressure, temperature and volume dependence of the Raman mode frequencies , 2000 .

[38]  R. Angel Equations of State , 2000 .

[39]  S. Sinogeikin,et al.  Compact high-temperature cell for Brillouin scattering measurements , 2000 .

[40]  N. Coltice,et al.  Geochemical observations and one layer mantle convection , 1999 .

[41]  P. Richet,et al.  High-temperature thermal expansion of lime, periclase, corundum and spinel , 1999 .

[42]  Weidner,et al.  Thermal equation of state of aluminum-enriched silicate perovskite , 1999, Science.

[43]  R. Hilst,et al.  Compositional stratification in the deep mantle , 1999, Science.

[44]  R. Hilst,et al.  Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model , 1999, Science.

[45]  Y. Fei Effects of temperature and composition on the bulk modulus of (Mg,Fe)O , 1999 .

[46]  O. Anderson,et al.  Shifts in thermal expansivity with Fe content for solid solutions of MgSiO3-FeSiO3 with the perovskite structure , 1999 .

[47]  S. Saxena,et al.  Equation of state of MgSiO3 with the perovskite structure based on experimental measurement , 1999 .

[48]  H. Mao,et al.  The fate of subducted basaltic crust in the Earth's lower mantle , 1999, Nature.

[49]  D. Weidner,et al.  Volume measurement of MgO at high pressures and high temperatures , 2013 .

[50]  Liebermann,et al.  Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition , 1998, Science.

[51]  J. Crain,et al.  First‐principles determination of elastic properties of CaSiO3 perovskite at lower mantle pressures , 1998 .

[52]  I. Jackson Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal , 1998 .

[53]  J. Gerald,et al.  Mineralogy and dynamics of a pyrolite lower mantle , 1998, Nature.

[54]  F. D. Stacey Thermoelasticity of a mineral composite and a reconsideration of lower mantle properties , 1998 .

[55]  K. Suito,et al.  Equation of state of MgSiO3 perovskite and its thermoelastic properties under lower mantle conditions , 1998 .

[56]  C. Sotin,et al.  Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity , 1998 .

[57]  Thorne Lay,et al.  The core–mantle boundary layer and deep Earth dynamics , 1998, Nature.

[58]  M. Kunz,et al.  P-V-T EQUATION OF STATE OF MGSIO3 PEROVSKITE , 1998 .

[59]  Mao,et al.  Multivariable dependence of Fe-Mg partitioning in the lower mantle , 1997, Science.

[60]  Sri Widiyantoro,et al.  Global seismic tomography: A snapshot of convection in the Earth: GSA Today , 1997 .

[61]  McSween Hy,et al.  Evidence for Life in a Martian Meteorite , 1997 .

[62]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[63]  F. Guyot,et al.  Microstructures and iron partitioning in (Mg,Fe)SiO3 perovskite‐(Mg,Fe)O magnesiowüstite assemblages: An analytical transmission electron microscopy study , 1997 .

[64]  F. D. Stacey Bullen's seismological homogeneity parameter, η, applied to a mixture of minerals: the case of the lower mantle , 1997 .

[65]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[66]  D. Rubie,et al.  The Effect of Alumina on Phase Transformations at the 660-Kilometer Discontinuity from Fe-Mg Partitioning Experiments , 1996, Science.

[67]  J. Ando,et al.  An experimental study of the garnet-perovskite transformation in the system MgSiO3Mg3Al2Si3O12 , 1996 .

[68]  T. Katsura,et al.  Determination of Fe‐Mg partitioning between perovskite and magnesiowüstite , 1996 .

[69]  A. Mohan Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths , 1996 .

[70]  Y. Fei,et al.  Maximum solubility of FeO in (Mg, Fe)SiO3‐perovskite as a function of temperature at 26 GPa: Implication for FeO content in the lower mantle , 1996 .

[71]  T. Kondo,et al.  Thermoelastic properties of MgSiO3 perovskite determined by in situ X ray observations up to 30 GPa and 2000 K , 1996 .

[72]  W. Liu,et al.  Thermal equation of state of CaGeO3 perovskite , 1996 .

[73]  Albrecht W. Hofmann,et al.  The chemical composition of the Earth , 1995 .

[74]  M. Javoy The integral enstatite chondrite model of the earth , 1995 .

[75]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[76]  T. Kikegawa,et al.  Thermal expansivity of MgSiO3 perovskite under high pressures up to 20 GPa , 1995 .

[77]  W. McDonough,et al.  The composition of the Earth , 1995 .

[78]  T. Irifune Absence of an aluminous phase in the upper part of the Earth's lower mantle , 1994, Nature.

[79]  D. Weidner,et al.  Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle , 1994 .

[80]  Yusheng Zhao,et al.  P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle , 1994 .

[81]  M. Richards,et al.  A geodynamic model of mantle density heterogeneity , 1993 .

[82]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[83]  H. Mao,et al.  Thermoelasticity of Silicate Perovskite and Magnesiow�stite and Stratification of the Earth's Mantle , 1992, Science.

[84]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[85]  H. Mao,et al.  Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3‐perovskites to 30 GPa , 1991 .

[86]  H. Mao,et al.  Experimental determination of element partitioning and calculation of phase relations in the MgO‐FeO‐SiO2 system at high pressure and high temperature , 1991 .

[87]  A. Revcolevschi,et al.  Elasticity, shear‐mode softening and high‐pressure polymorphism of wüstite (Fe1‐xO) , 1990 .

[88]  Y. Fei,et al.  Crystal structure and thermal expansion of (Mg,Fe)SiO3 perovskite , 1990 .

[89]  G. Wolf,et al.  Thermodynamically consistent decompression: Implications for lower mantle composition , 1990 .

[90]  P. Silver,et al.  Constraints on lower mantle composition and temperature from density and bulk sound velocity profiles , 1990 .

[91]  M. Mehl,et al.  Calculated elastic and thermal properties of MGO at high pressures and temperatures , 1990 .

[92]  O. Anderson,et al.  Measured elastic moduli of single-crystal MgO up to 1800 K , 1989 .

[93]  R. Jeanloz,et al.  Density and composition of the lower mantle , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[94]  T. Katsura,et al.  A temperature profile of the mantle transition zone , 1989 .

[95]  D. Weidner,et al.  Elasticity of MgSiO3 in the Perovskite Structure , 1989, Science.

[96]  P. Silver,et al.  Deep Slabs, Geochemical Heterogeneity, and the Large-Scale Structure of Mantle Convection: Investigation of an Enduring Paradox , 1988 .

[97]  R. Jeanloz,et al.  Synthesis and Equation of State of (Mg,Fe)SiO3 Perovskite to Over 100 Gigapascals. , 1987 .

[98]  Lin-Gun Liu,et al.  Bulk moduli of wüstite and periclase: a comparative study , 1987 .

[99]  R. Jeanloz,et al.  Synthesis and Equation of State of (Mg,Fe) SiO3 Perovskite to Over 100 Gigapascals , 1987, Science.

[100]  T. Staudacher,et al.  Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle , 1987 .

[101]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[102]  S. Hart,et al.  In search of a bulk-Earth composition , 1986 .

[103]  Raymond Jeanloz,et al.  Hydrostatic compression of Fe1‐x O Wüstite , 1986 .

[104]  D. L. Anderson,et al.  Transition region of the Earth's upper mantle , 1986, Nature.

[105]  Toshihiro Suzuki,et al.  Static compression of wüstite (Fe0.98O) to 120 GPa , 1985 .

[106]  J. M. Brown,et al.  Homogeneity and temperatures in the lower mantle , 1985 .

[107]  B. Hager,et al.  Geoid Anomalies in a Dynamic Earth , 1984 .

[108]  A. E. Ringwood,et al.  Phase Transformations and Differentiation in Subducted Lithosphere: Implications for Mantle Dynamics, Basalt Petrogenesis, and Crustal Evolution , 1982, The Journal of Geology.

[109]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[110]  Ian Jackson,et al.  The Elasticity of Periclase to 3 GPa and Some Geophysical Implications , 1982 .

[111]  J. M. Brown,et al.  Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .

[112]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[113]  Stephen J. Finch,et al.  Elastic properties from acoustic and volume compression experiments , 1981 .

[114]  G. Will,et al.  The compressibility of FeO measured by energy dispersive X-ray diffraction in a diamond anvil squeezer up to 200 kbar , 1980 .

[115]  Osamu Nishizawa,et al.  THE ELASTIC CONSTANTS OF SINGLE CRYSTAL Fe1-xO, MnO AND CoO, AND THE ELASTICITY OF STOICHIOMETRIC MAGNESIOWÜSTITE , 1980 .

[116]  P. Keyes,et al.  THE NEMATIC-ISOTROPIC TRANSITION AT HIGH PRESSURES I : THE P-V-T EQUATION OF STATE , 1979 .

[117]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[118]  J. Watt,et al.  The Elastic Properties of Composite Materials , 1976 .

[119]  I. Suzuki Thermal Expansion of Periclase and Olivine, and their Anharmonic Properties , 1975 .

[120]  K. Bullen The Earth's Density , 1975 .

[121]  B. Jaffe CHAPTER 4 – THE PEROVSKITE STRUCTURE , 1971 .

[122]  Brian J. Skinner,et al.  SECTION 6: THERMAL EXPANSION , 1966 .

[123]  A. E. Ringwood,et al.  Mineral assemblages in a model mantle composition , 1963 .

[124]  A. E. Ringwood,et al.  A model for the upper mantle , 1962 .

[125]  F. Ingo,et al.  High Pressures , 1942, Science.

[126]  H. S. Washington The chemical composition of the earth , 1925 .