Catalytic Electrophilic Alkylation of p-Quinones through a Redox Chain Reaction.

Allylation and benzylation of p-quinones was achieved through an unusual redox chain reaction. Mechanistic studies suggest that the existence of trace hydroquinone initiates a redox chain reaction that consists of a Lewis acid catalyzed Friedel-Crafts alkylation and a subsequent redox equilibrium that regenerates hydroquinone. The electrophiles could be various allylic and benzylic esters. The addition of Hantzsch ester as an initiator improves the efficiency of the reaction.

[1]  143. Nuclear methylation of phenols by means of methanolic sodium methoxide , 1942 .

[2]  142. Preparation of certain 3-substituted indoles , 1942 .

[3]  F. L. Crane,et al.  Vitamin K1 in Chloroplasts , 1962, Nature.

[4]  Y. Naruta Regio- and stereoselective synthesis of coenzymes Qn (n = 2-10), vitamin K, and related polyprenylquinones , 1980 .

[5]  P. Keehn,et al.  Active MnO2. Oxidative Dehydrogenations , 1982 .

[6]  S. Enomoto,et al.  Catalytic Oxidation of Hydroquinones and Naphthalenediols to 1,4-Quinones with H2O2 in the Presence of Chromium(VI) Oxide-Bistributyltin Oxide and an Application to Vitamin K1 Synthesis , 1986 .

[7]  C. Eguchi,et al.  A Novel Solvent Effect in the Practical Synthesis of Ubiquinone-10 , 1988 .

[8]  G. Kito,et al.  Quinones. 4. Novel eicosanoid antagonists: synthesis and pharmacological evaluation. , 1989, Journal of medicinal chemistry.

[9]  P. Wardman,et al.  Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution , 1989 .

[10]  E. Cadenas,et al.  Redox and addition chemistry of quinoid compounds and its biological implications. , 1989, Free radical biology & medicine.

[11]  G. Dallner,et al.  Biochemical, physiological and medical aspects of ubiquinone function. , 1995, Biochimica et biophysica acta.

[12]  C. Pac,et al.  Catalytic Activities of CuSO(4)/Al(2)O(3) in Dehydrogenation of Arenes by Dioxygen. , 1997, The Journal of organic chemistry.

[13]  W Leibl,et al.  Electron transfer in photosystem I. , 2001, Biochimica et biophysica acta.

[14]  J. Yoshida,et al.  A new synthetic route to substituted quinones by radical-mediated coupling of organotellurium compounds with quinones , 2002 .

[15]  B. Lipshutz,et al.  A short, highly efficient synthesis of coenzyme Q(10). , 2002, Journal of the American Chemical Society.

[16]  J. Lugtenburg,et al.  Synthesis and Spectroscopic Characterization of 1‐13C‐ and 4‐13C‐Plastoquinone‐9 , 2002 .

[17]  E. Negishi,et al.  A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme Q(10). , 2002, Organic letters.

[18]  S. Koo,et al.  The Friedel-Crafts allylation of a prenyl group stabilized by a sulfone moiety: expeditious syntheses of ubiquinones and menaquinones. , 2003, The Journal of organic chemistry.

[19]  P. Fromme,et al.  Unraveling the Photosystem I Reaction Center: A History, or the Sum of Many Efforts , 2004, Photosynthesis Research.

[20]  F. Wetterich,et al.  An improved synthesis of the "miracle nutrient" coenzyme Q10. , 2005, Organic letters.

[21]  B. Lipshutz,et al.  Enhancing regiocontrol in carboaluminations of terminal alkynes. Application to the one-pot synthesis of coenzyme Q10. , 2007, Organic letters.

[22]  M. L. Genova,et al.  The role of Coenzyme Q in mitochondrial electron transport. , 2007, Mitochondrion.

[23]  H. Miyamura,et al.  Aerobic oxidation of hydroquinone derivatives catalyzed by polymer-incarcerated platinum catalyst. , 2008, Angewandte Chemie.

[24]  R. Compton,et al.  Characterising chemical functionality on carbon surfaces , 2009 .

[25]  Phil S. Baran,et al.  Redoxkonomie in der organischen Synthese , 2009 .

[26]  R. W. Hoffmann,et al.  Redox economy in organic synthesis. , 2009, Angewandte Chemie.

[27]  J. Golbeck,et al.  Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I. , 2009, Biochimica et biophysica acta.

[28]  G. Dallner,et al.  Coenzyme Q--biosynthesis and functions. , 2010, Biochemical and biophysical research communications.

[29]  M. Vasconcelos,et al.  Compounds from wild mushrooms with antitumor potential. , 2010, Anti-cancer agents in medicinal chemistry.

[30]  S. Murahashi,et al.  Synthesis of 2-substituted quinones, vitamin K3, and vitamin K1 from p-cresol. BF3.OEt2-catalyzed methyl migration of 4-tert-butyldioxycyclohexadienones. , 2010 .

[31]  P. Dandawate,et al.  Perspectives on medicinal properties of benzoquinone compounds. , 2010, Mini reviews in medicinal chemistry.

[32]  F. L. Crane Discovery of plastoquinones: a personal perspective , 2010, Photosynthesis Research.

[33]  J. Kruk,et al.  Occurrence, biosynthesis and function of isoprenoid quinones. , 2010, Biochimica et biophysica acta.

[34]  H. Miyashita,et al.  An overview on chlorophylls and quinones in the photosystem I-type reaction centers , 2010, Photosynthesis Research.

[35]  P. Baran,et al.  Practical C-H functionalization of quinones with boronic acids. , 2011, Journal of the American Chemical Society.

[36]  M. L. Genova,et al.  New developments on the functions of coenzyme Q in mitochondria. , 2011, BioFactors.

[37]  Qing Sun,et al.  Discovery and mechanistic studies of a general air-promoted metal-catalyzed aerobic N-alkylation reaction of amides and amines with alcohols. , 2011, The Journal of organic chemistry.

[38]  Yasutaka Inubushi,et al.  Ruthenium‐Catalyzed Oxidative Dearomatization of Phenols to 4‐(tert‐Butylperoxy)cyclohexadienones: Synthesis of 2‐Substituted Quinones from p‐Substituted Phenols , 2011 .

[39]  M. Davies-Coleman,et al.  Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. , 2012, Natural product reports.

[40]  Ji Zhang,et al.  Iron-mediated direct arylation with arylboronic acids through an aryl radical transfer pathway. , 2012, Chemical communications.

[41]  Liangjun Su,et al.  Synthesis of Coenzyme Q10 , 2012 .

[42]  Q. Miao,et al.  N-Heteropentacenes and N-Heteropentacenequinones:From Molecules to Semiconductors , 2012 .

[43]  Xiaogang Zhu,et al.  Green and Scalable Aldehyde-Catalyzed Transition Metal-Free Dehydrative N-Alkylation of Amides and Amines with Alcohols , 2013 .

[44]  R. Pike,et al.  Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts. , 2013, Accounts of chemical research.

[45]  A. Ilangovan,et al.  γ-Carbonyl quinones: radical strategy for the synthesis of evelynin and its analogues by C-H activation of quinones using cyclopropanols. , 2013, Organic letters.

[46]  Dongbing Zhao,et al.  Tandem oxidation-oxidative C-H/C-H cross-coupling: synthesis of arylquinones from hydroquinones. , 2013, Chemical communications.

[47]  R. Vishwakarma,et al.  Iron-catalyzed cross-coupling of electron-deficient heterocycles and quinone with organoboron species via innate C-H functionalization: application in total synthesis of pyrazine alkaloid botryllazine A. , 2013, The Journal of organic chemistry.

[48]  Jimmy Wu,et al.  Redox chain reaction-indole and pyrrole alkylation with unactivated secondary alcohols. , 2013, Angewandte Chemie.

[49]  Jianping Liu,et al.  Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones. , 2014, Angewandte Chemie.

[50]  S. Macgregor,et al.  Palladium-Catalyzed Direct CH Functionalization of Benzoquinone† , 2014 .

[51]  Wei Ma,et al.  Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro- to nano-scale. , 2014, Chemical Society reviews.

[52]  S. Macgregor,et al.  Palladium-Catalyzed Direct C=H Functionalization of Benzoquinone** , 2014, Angewandte Chemie.

[53]  Dong Wang,et al.  Direct allylation of quinones with allylboronates. , 2015, The Journal of organic chemistry.

[54]  T. Marks,et al.  Selective Ether/Ester C–O Cleavage of an Acetylated Lignin Model via Tandem Catalysis , 2015 .

[55]  H. Lichtenthaler Fifty-Five Years of Research on Photosynthesis, Chloroplasts, and Stress Physiology of Plants: 1958–2013 , 2015 .

[56]  Rajeev S. Assary,et al.  Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)O–R′ Bond Hydrogenolysis. Scope and Mechanism , 2015 .

[57]  Y. Gogotsi,et al.  Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene , 2016 .

[58]  R. Dominko,et al.  Quinone-formaldehyde polymer as an active material in Li-ion batteries , 2016 .

[59]  S. Stahl,et al.  Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. , 2016, Journal of the American Chemical Society.

[60]  Guihua Yu,et al.  A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage. , 2016, Angewandte Chemie.

[61]  T. Marks,et al.  Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis. , 2016, Accounts of chemical research.

[62]  Rajeev S. Assary,et al.  Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism , 2016 .