A Global Linear and Local Quadratic Continuation Smoothing Method for Variational Inequalities with Box Constraints

In this paper, we propose a continuation method for box constrained variational inequality problems. The continuation method is based on the class of Gabriel-Moré smooth functions and has the following attractive features: It can start from any point; It has a simple and natural neighborhood definition; It solves only one approximate Newton equation at each iteration; It converges globally linearly and locally quadratically under nondegeneracy assumption at the solution point and other suitable assumptions. A hybrid method is also presented, which is shown to preserve the above convergence properties without the nondegeneracy assumption at the solution point. In particular, the hybrid method converges finitely for affine problems.

[1]  Patrick T. Harker,et al.  Newton's method for the nonlinear complementarity problem: A B-differentiable equation approach , 1990, Math. Program..

[2]  L. Qi,et al.  A Globally Convergent Successive Approximation Method for Severely Nonsmooth Equations , 1995 .

[3]  Masao Fukushima,et al.  Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities , 1998, Math. Program..

[4]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[5]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[6]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[7]  K. G. Murty,et al.  Complementarity problems , 2000 .

[8]  Bintong Chen Finite convergence of nonsmooth equation based methods for affine variational inequalities , 1992 .

[9]  J. J. Moré,et al.  Smoothing of mixed complementarity problems , 1995 .

[10]  G. Isac Complementarity Problems , 1992 .

[11]  Christian Kanzow,et al.  A continuation method for (strongly) monotone variational inequalities , 1998, Math. Program..

[12]  Robert M. Freund,et al.  Interior point methods : current status and future directions , 1996 .

[13]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[14]  James V. Burke,et al.  The Global Linear Convergence of a Noninterior Path-Following Algorithm for Linear Complementarity Problems , 1998, Math. Oper. Res..

[15]  Bintong Chen,et al.  A Global Linear and Local Quadratic Noninterior Continuation Method for Nonlinear Complementarity Problems Based on Chen-Mangasarian Smoothing Functions , 1999, SIAM J. Optim..

[16]  F. Facchinei,et al.  A semismooth Newton method for variational in - equalities: The case of box constraints , 1997 .

[17]  Andreas Fischer,et al.  On finite termination of an iterative method for linear complementarity problems , 1996, Math. Program..

[18]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[19]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Box-Constrained Variational Inequalities , 1999 .

[20]  S. Dirkse,et al.  A Comparison of Algorithms for Large Scale Mixed Complementarity Problems , 1995 .

[21]  Houyuan Jiang Global Convergence Analysis of the Generalized Newton and Gauss-Newton Methods of the Fischer Burmeister Equation for the Complementarity Problem , 1999 .

[22]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[23]  Xiaojun Chen,et al.  A parameterized Newton method and a quasi-Newton method for nonsmooth equations , 1994, Comput. Optim. Appl..

[24]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[25]  Keisuke Hotta,et al.  Global convergence of a class of non-interior point algorithms using Chen-Harker-Kanzow-Smale functions for nonlinear complementarity problems , 1999, Math. Program..

[26]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[27]  Patrick T. Harker,et al.  A Noninterior Continuation Method for Quadratic and Linear Programming , 1993, SIAM J. Optim..

[28]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[29]  Defeng Sun,et al.  A New Unconstrained Differentiable Merit Function for Box Constrained Variational Inequality Problems and a Damped Gauss-Newton Method , 1999, SIAM J. Optim..

[30]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[31]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[32]  Steven A. Gabriel,et al.  A Hybrid Smoothing Method for Mixed Nonlinear Complementarity Problems , 1998, Comput. Optim. Appl..

[33]  Song Xu,et al.  The global linear convergence of an infeasible non-interior path-following algorithm for complementarity problems with uniform P-functions , 2000, Math. Program..

[34]  Nimrod Megiddo,et al.  Homotopy Continuation Methods for Nonlinear Complementarity Problems , 1991, Math. Oper. Res..

[35]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Variational Inequalities , 1999 .

[36]  Shinji Mizuno,et al.  A General Framework of Continuation Methods for Complementarity Problems , 1993, Math. Oper. Res..

[37]  Yinyu Ye,et al.  On quadratic and $$O\left( {\sqrt {nL} } \right)$$ convergence of a predictor—corrector algorithm for LCP , 1993, Math. Program..

[38]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[39]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[40]  Patrick T. Harker,et al.  A continuation method for monotone variational inequalities , 1995, Math. Program..

[41]  Stephen J. Wright,et al.  A superlinear infeasible-interior-point algorithm for monotone complementarity problems , 1996 .

[42]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[43]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[44]  Paul Tseng,et al.  An Infeasible Path-Following Method for Monotone Complementarity Problems , 1997, SIAM J. Optim..

[45]  Stephen M. Robinson,et al.  Implementation of a continuation method for normal maps , 1997, Math. Program..

[46]  Israel Zang,et al.  A smoothing-out technique for min—max optimization , 1980, Math. Program..

[47]  Michael C. Ferris,et al.  A Comparison of Large Scale Mixed Complementarity Problem Solvers , 1997, Comput. Optim. Appl..