Parametric estimation. Finite sample theory
暂无分享,去创建一个
[1] Le Cam,et al. Locally asymptotically normal families of distributions : certain approximations to families of distributions & thier use in the theory of estimation & testing hypotheses , 1960 .
[2] R. Z. Khasʹminskiĭ,et al. Statistical estimation : asymptotic theory , 1981 .
[3] P. McCullagh,et al. Generalized Linear Models , 1984 .
[4] P. McCullagh,et al. Generalized Linear Models, 2nd Edn. , 1990 .
[5] P. Massart,et al. Rates of convergence for minimum contrast estimators , 1993 .
[6] S. Geer. Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators , 1993 .
[7] John A. Nelder,et al. Generalized linear models. 2nd ed. , 1993 .
[8] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[9] M. Talagrand. Majorizing measures: the generic chaining , 1996 .
[10] P. Massart,et al. Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .
[11] M. Talagrand. Majorizing measures without measures , 2001 .
[12] P. MassartLedoux,et al. Concentration Inequalities Using the Entropy Method , 2002 .
[13] T. N. Sriram. Asymptotics in Statistics–Some Basic Concepts , 2002 .
[14] M. Talagrand. The Generic Chaining , 2005 .
[15] M. Talagrand. The Generic chaining : upper and lower bounds of stochastic processes , 2005 .
[16] A theorem on majorizing measures , 2005, math/0510373.
[17] L. Birge,et al. Model selection via testing: an alternative to (penalized) maximum likelihood estimators , 2006 .
[18] Y. Baraud. A Bernstein-type inequality for suprema of random processes with an application to statistics , 2009, 0904.3295.
[19] Weining Wang,et al. Local Quantile Regression , 2010, 1208.5384.
[20] Vladimir Spokoiny,et al. Penalized maximum likelihood estimation and effective dimension , 2012, 1205.0498.
[21] Roughness penalty, Wilks Phenomenon, and Bernstein - von Mises Theorem , 2012 .