Enhanced spin–orbit coupling in core/shell nanowires

[1]  F. Giustino,et al.  The 2021 quantum materials roadmap , 2020, Journal of Physics: Materials.

[2]  A. Bezryadin,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Topological Insulator Josephson Junctions , 2018 .

[3]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[4]  D. Vanderbilt,et al.  Surface polarization and edge charges , 2015, 1505.00072.

[5]  Tobias Korn,et al.  Long exciton lifetimes in stacking-fault-free wurtzite GaAs nanowires , 2014 .

[6]  Vladimir A. Volkov,et al.  Interface contributions to the spin-orbit interaction parameters of electrons at the (001) GaAs/AlGaAs interface , 2014, 1410.2519.

[7]  D. Hägele,et al.  Electron spin dynamics in GaN , 2014 .

[8]  K. Richter,et al.  Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry. , 2014, Nature nanotechnology.

[9]  E. Lörtscher,et al.  Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress , 2014, Nature Communications.

[10]  W. Wegscheider,et al.  Inelastic light-scattering from spin-density excitations in the regime of the persistent spin helix in a GaAs-AlGaAs quantum well , 2014 .

[11]  E. Bakkers,et al.  Quantum computing based on semiconductor nanowires , 2013 .

[12]  Vladimir A. Volkov,et al.  Spin splitting of two-dimensional states in the conduction band of asymmetric heterostructures: Contribution from the atomically sharp interface , 2013, 1410.2432.

[13]  B. Fimland,et al.  Polarization dependent photocurrent spectroscopy of single wurtzite GaAs/AlGaAs core-shell nanowires , 2013 .

[14]  B. Fimland,et al.  A story told by a single nanowire: optical properties of wurtzite GaAs. , 2012, Nano letters.

[15]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[16]  E. Bakkers,et al.  Fast spin-orbit qubit in an indium antimonide nanowire. , 2012, Physical review letters.

[17]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[18]  W. Wegscheider,et al.  Direct mapping of the formation of a persistent spin helix , 2012, Nature Physics.

[19]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[20]  E. Bakkers,et al.  Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires. , 2012, Physical review letters.

[21]  Y. Cordier,et al.  Dyakonov-Perel electron spin relaxation in a wurtzite semiconductor: From the nondegenerate to the highly degenerate regime , 2011 .

[22]  J. Arbiol,et al.  Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy. , 2011, ACS nano.

[23]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[24]  E. Bakkers,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[25]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[26]  F. Semond,et al.  Temperature dependence of electron spin relaxation in bulk GaN , 2010 .

[27]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[28]  F. Semond,et al.  Anisotropic electron spin relaxation in bulk GaN , 2009 .

[29]  K. Dick,et al.  The use of gold for fabrication of nanowire structures , 2009 .

[30]  C. Pryor,et al.  Predicted band structures of III-V semiconductors in the wurtzite phase , 2009, 0908.1984.

[31]  S. Tarasenko Spin relaxation of conduction electrons in (110)-grown quantum wells: A microscopic theory , 2009, 0907.5556.

[32]  D. Awschalom,et al.  Emergence of the persistent spin helix in semiconductor quantum wells , 2009, Nature.

[33]  Chennupati Jagadish,et al.  Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures , 2008 .

[34]  Mikhail I. Dyakonov Spin physics in semiconductors , 2008 .

[35]  M. W. Wu,et al.  Spin-orbit coupling in bulk ZnO and GaN , 2008, 0805.1577.

[36]  B. Bernevig,et al.  An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System , 2008 .

[37]  Yia-Chung Chang,et al.  Dresselhaus effect in bulk wurtzite materials , 2007 .

[38]  X. Cartoixà,et al.  Higher-order contributions to Rashba and Dresselhaus effects , 2005, cond-mat/0511538.

[39]  I. Lo,et al.  Wurtzite structure effects on spin splitting in GaN/AlN quantum wells , 2005, cond-mat/0510831.

[40]  E. Ivchenko Optical Spectroscopy of Semiconductor Nanostructures , 2005 .

[41]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[42]  D. Schuh,et al.  Anomalous spin dephasing in [110] GaAs quantum wells , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[43]  J. Schliemann,et al.  Nonballistic spin-field-effect transistor. , 2002, Physical review letters.

[44]  H. Ohno,et al.  Semiconductor spintronics , 2002 .

[45]  J. Kainz,et al.  Microscopic interface asymmetry and spin-splitting of electron subbands in semiconductor quantum structures , 2002 .

[46]  M. Limonov,et al.  Optical Selection Rules for Hexagonal GaN , 1999 .

[47]  P. Pfeffer Effect of inversion asymmetry on the conduction subbands in G a A s − G a 1 − x Al x As heterostructures , 1999 .

[48]  S. Sarma,et al.  Spin relaxation of conduction electrons , 1999, cond-mat/9901170.

[49]  E. Ivchenko,et al.  Heavy-light hole mixing at zinc-blende (001) interfaces under normal incidence. , 1996, Physical review. B, Condensed matter.

[50]  Christensen,et al.  Terms linear in k in the band structure of wurtzite-type semiconductors. , 1996, Physical review. B, Condensed matter.

[51]  Etienne,et al.  Spin orientation at semiconductor heterointerfaces. , 1995, Physical review. B, Condensed matter.

[52]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[53]  E. Ivchenko,et al.  Anisotropic exchange splitting in type-II GaAs/AlAs superlattices , 1992 .

[54]  R. Lassnig k→⋅p→ theory, effective-mass approach, and spin splitting for two-dimensional electrons in GaAs-GaAlAs heterostructures , 1985 .

[55]  L. Goldstein,et al.  Low‐temperature photoluminescence properties of high‐quality GaAs layers grown by molecular‐beam epitaxy , 1985 .

[56]  新宮 秀夫 "Springer Series in Solid-State Sciences Vol.5 Fundamentals of Crystrals of Crystal Growth I Macroscopic Equilibrium and Transport Concepts", F. Rosenberger(著), 1979年,Springer-Verlag 発刊, B5判, 520ページ, DM79, - , 1980 .

[57]  C. Weisbuch,et al.  Optical detection of conduction-electron spin resonance in GaAs, Ga 1 − x In x As , and Ga 1 − x Al x As , 1977 .

[58]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[59]  J. Birman Some Selection Rules for Band-Band Transitions in Wurtzite Structure , 1959 .

[60]  J. Birman Polarization of Fluorescence in CdS and ZnS Single Crystals , 1959 .

[61]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[62]  Wilhelm Hanle,et al.  Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz , 1924 .

[63]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[64]  Allan D. Boardman,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[65]  E. Rashba,et al.  Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .

[66]  E. W. Williams,et al.  Chapter 4 Photoluminescence I: Theory , 1972 .

[67]  Michel Dyakonov,et al.  Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors , 1971 .