Enhanced spin–orbit coupling in core/shell nanowires
暂无分享,去创建一个
J. Fabian | D. Bougeard | M. Gmitra | T. Korn | E. Reiger | C. Schüller | F. Dirnberger | A. Bayer | J. Hubmann | M. Forsch | S. Furthmeier
[1] F. Giustino,et al. The 2021 quantum materials roadmap , 2020, Journal of Physics: Materials.
[2] A. Bezryadin,et al. Signatures of Majorana Fermions in Hybrid Superconductor-Topological Insulator Josephson Junctions , 2018 .
[3] R. Duine,et al. New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.
[4] D. Vanderbilt,et al. Surface polarization and edge charges , 2015, 1505.00072.
[5] Tobias Korn,et al. Long exciton lifetimes in stacking-fault-free wurtzite GaAs nanowires , 2014 .
[6] Vladimir A. Volkov,et al. Interface contributions to the spin-orbit interaction parameters of electrons at the (001) GaAs/AlGaAs interface , 2014, 1410.2519.
[7] D. Hägele,et al. Electron spin dynamics in GaN , 2014 .
[8] K. Richter,et al. Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry. , 2014, Nature nanotechnology.
[9] E. Lörtscher,et al. Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress , 2014, Nature Communications.
[10] W. Wegscheider,et al. Inelastic light-scattering from spin-density excitations in the regime of the persistent spin helix in a GaAs-AlGaAs quantum well , 2014 .
[11] E. Bakkers,et al. Quantum computing based on semiconductor nanowires , 2013 .
[12] Vladimir A. Volkov,et al. Spin splitting of two-dimensional states in the conduction band of asymmetric heterostructures: Contribution from the atomically sharp interface , 2013, 1410.2432.
[13] B. Fimland,et al. Polarization dependent photocurrent spectroscopy of single wurtzite GaAs/AlGaAs core-shell nanowires , 2013 .
[14] B. Fimland,et al. A story told by a single nanowire: optical properties of wurtzite GaAs. , 2012, Nano letters.
[15] Y. Oreg,et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.
[16] E. Bakkers,et al. Fast spin-orbit qubit in an indium antimonide nanowire. , 2012, Physical review letters.
[17] Ningfeng Huang,et al. Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.
[18] W. Wegscheider,et al. Direct mapping of the formation of a persistent spin helix , 2012, Nature Physics.
[19] E. Bakkers,et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.
[20] E. Bakkers,et al. Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires. , 2012, Physical review letters.
[21] Y. Cordier,et al. Dyakonov-Perel electron spin relaxation in a wurtzite semiconductor: From the nondegenerate to the highly degenerate regime , 2011 .
[22] J. Arbiol,et al. Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy. , 2011, ACS nano.
[23] Martin Heiss,et al. Impact of surfaces on the optical properties of GaAs nanowires , 2010 .
[24] E. Bakkers,et al. Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.
[25] X. Qi,et al. Topological insulators and superconductors , 2010, 1008.2026.
[26] F. Semond,et al. Temperature dependence of electron spin relaxation in bulk GaN , 2010 .
[27] Joel E Moore,et al. The birth of topological insulators , 2010, Nature.
[28] F. Semond,et al. Anisotropic electron spin relaxation in bulk GaN , 2009 .
[29] K. Dick,et al. The use of gold for fabrication of nanowire structures , 2009 .
[30] C. Pryor,et al. Predicted band structures of III-V semiconductors in the wurtzite phase , 2009, 0908.1984.
[31] S. Tarasenko. Spin relaxation of conduction electrons in (110)-grown quantum wells: A microscopic theory , 2009, 0907.5556.
[32] D. Awschalom,et al. Emergence of the persistent spin helix in semiconductor quantum wells , 2009, Nature.
[33] Chennupati Jagadish,et al. Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures , 2008 .
[34] Mikhail I. Dyakonov. Spin physics in semiconductors , 2008 .
[35] M. W. Wu,et al. Spin-orbit coupling in bulk ZnO and GaN , 2008, 0805.1577.
[36] B. Bernevig,et al. An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System , 2008 .
[37] Yia-Chung Chang,et al. Dresselhaus effect in bulk wurtzite materials , 2007 .
[38] X. Cartoixà,et al. Higher-order contributions to Rashba and Dresselhaus effects , 2005, cond-mat/0511538.
[39] I. Lo,et al. Wurtzite structure effects on spin splitting in GaN/AlN quantum wells , 2005, cond-mat/0510831.
[40] E. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures , 2005 .
[41] S. Sarma,et al. Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.
[42] D. Schuh,et al. Anomalous spin dephasing in [110] GaAs quantum wells , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..
[43] J. Schliemann,et al. Nonballistic spin-field-effect transistor. , 2002, Physical review letters.
[44] H. Ohno,et al. Semiconductor spintronics , 2002 .
[45] J. Kainz,et al. Microscopic interface asymmetry and spin-splitting of electron subbands in semiconductor quantum structures , 2002 .
[46] M. Limonov,et al. Optical Selection Rules for Hexagonal GaN , 1999 .
[47] P. Pfeffer. Effect of inversion asymmetry on the conduction subbands in G a A s − G a 1 − x Al x As heterostructures , 1999 .
[48] S. Sarma,et al. Spin relaxation of conduction electrons , 1999, cond-mat/9901170.
[49] E. Ivchenko,et al. Heavy-light hole mixing at zinc-blende (001) interfaces under normal incidence. , 1996, Physical review. B, Condensed matter.
[50] Christensen,et al. Terms linear in k in the band structure of wurtzite-type semiconductors. , 1996, Physical review. B, Condensed matter.
[51] Etienne,et al. Spin orientation at semiconductor heterointerfaces. , 1995, Physical review. B, Condensed matter.
[52] Nakayama,et al. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.
[53] E. Ivchenko,et al. Anisotropic exchange splitting in type-II GaAs/AlAs superlattices , 1992 .
[54] R. Lassnig. k→⋅p→ theory, effective-mass approach, and spin splitting for two-dimensional electrons in GaAs-GaAlAs heterostructures , 1985 .
[55] L. Goldstein,et al. Low‐temperature photoluminescence properties of high‐quality GaAs layers grown by molecular‐beam epitaxy , 1985 .
[56] 新宮 秀夫. "Springer Series in Solid-State Sciences Vol.5 Fundamentals of Crystrals of Crystal Growth I Macroscopic Equilibrium and Transport Concepts", F. Rosenberger(著), 1979年,Springer-Verlag 発刊, B5判, 520ページ, DM79, - , 1980 .
[57] C. Weisbuch,et al. Optical detection of conduction-electron spin resonance in GaAs, Ga 1 − x In x As , and Ga 1 − x Al x As , 1977 .
[58] R. S. Wagner,et al. VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .
[59] J. Birman. Some Selection Rules for Band-Band Transitions in Wurtzite Structure , 1959 .
[60] J. Birman. Polarization of Fluorescence in CdS and ZnS Single Crystals , 1959 .
[61] G. Dresselhaus. Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .
[62] Wilhelm Hanle,et al. Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz , 1924 .
[63] S. Sikdar,et al. Fundamentals and applications , 1998 .
[64] Allan D. Boardman,et al. Modern Problems in Condensed Matter Sciences , 1991 .
[65] E. Rashba,et al. Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .
[66] E. W. Williams,et al. Chapter 4 Photoluminescence I: Theory , 1972 .
[67] Michel Dyakonov,et al. Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors , 1971 .