Exploring the detection of AQNs in large liquid detectors
暂无分享,去创建一个
[1] A. Heggestuen. Light detection and Cosmic Rejection in the ICARUS LArTPC at Fermilab , 2023, 2312.05684.
[2] V. Flambaum,et al. Possibility of antiquark nuggets detection using meteor searching radars , 2023, Physical Review D.
[3] A. Zhitnitsky. Structure Formation Paradigm and Axion Quark Nugget Dark Matter Model , 2023, SSRN Electronic Journal.
[4] J. Zennamo,et al. Large low background kTon-scale liquid argon time projection chambers , 2023, Journal of Physics G: Nuclear and Particle Physics.
[5] I. Stancu,et al. Background determination for the LUX-ZEPLIN dark matter experiment , 2022, Physical Review D.
[6] R. Froeschl,et al. New Capabilities of the FLUKA Multi-Purpose Code , 2022, Frontiers in Physics.
[7] B. Behera. Cosmogenic background suppression at the ICARUS using a concrete overburden , 2021, Journal of Physics: Conference Series.
[8] U. Schneekloth,et al. Probing the axion–nucleon coupling with the next generation of axion helioscopes , 2021, The European Physical Journal C.
[9] V. Flambaum,et al. Radiation from matter-antimatter annihilation in the quark nugget model of dark matter , 2021, Physical Review D.
[10] I. Lazanu,et al. Can strangelets be detected in a large LAr neutrino detector? , 2021, Journal of Cosmology and Astroparticle Physics.
[11] I. Lazanu,et al. Radioactive background for ProtoDUNE detector , 2021, Journal of Cosmology and Astroparticle Physics.
[12] A. Zhitnitsky,et al. Proposed network to detect axion quark nugget dark matter , 2020, Physical Review D.
[13] J. Richard. Antiproton Physics , 2019, Frontiers in Physics.
[14] A. Mead,et al. Axion quark nugget dark matter: Time modulations and amplifications , 2019, Physical Review D.
[15] Keming Zhang,et al. deepCR: Cosmic Ray Rejection with Deep Learning , 2019, J. Open Source Softw..
[16] M. Valluri,et al. On the estimation of the local dark matter density using the rotation curve of the Milky Way , 2019, Journal of Cosmology and Astroparticle Physics.
[17] A. Zhitnitsky,et al. Axion quark nugget dark matter model: Size distribution and survival pattern , 2019, Physical Review D.
[18] G. Karagiorgi,et al. Dual MeV gamma-ray and dark matter observatory - GRAMS Project , 2019, Astroparticle Physics.
[19] A. J. Long,et al. Dark quark nuggets , 2018, Physical Review D.
[20] Y. Semertzidis,et al. New mechanism producing axions in the AQN model and how the CAST can discover them , 2018, Physical Review D.
[21] E. Vallazza,et al. Measurement of the antiproton–nucleus annihilation cross-section at low energy , 2018 .
[22] A. Zhitnitsky. Solar flares and the axion quark nugget dark matter model , 2018, Physics of the Dark Universe.
[23] D. A. Wickremasinghe,et al. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter , 2017, 1707.09903.
[24] S. Soleti. The Muon Counter System for the MicroBooNE experiment , 2016, 1604.07858.
[25] P. Gorham,et al. Stringent neutrino flux constraints on antiquark nugget dark matter , 2015, 1507.03545.
[26] P. W. Chin,et al. Overview of the FLUKA code , 2014, ICS 2014.
[27] W. Creus. Light yield in liquid argon for dark matter detection , 2013 .
[28] A. Zhitnitsky,et al. Quark (Anti) Nugget Dark Matter , 2013, 1305.6318.
[29] P. Gorham. Antiquark nuggets as dark matter: New constraints and detection prospects , 2012, 1208.3697.
[30] The Borexino Collaboration. Search for Solar Axions Produced in p(d,3He)A Reaction with Borexino Detector , 2012, 1203.6258.
[31] A. Zhitnitsky,et al. Electrosphere of macroscopic 'quark nuclei': A source for diffuse MeV emissions from dark matter , 2009, 0910.4541.
[32] A. Zhitnitsky,et al. WMAP Haze: Directly Observing Dark Matter? , 2008, 0802.3830.
[33] M. Alford,et al. Color Superconductivity in Dense, but not Asymptotically Dense, Quark Matter , 2006, hep-ph/0606157.
[34] J. H. Hubbell,et al. XCOM : Photon Cross Sections Database , 2005 .
[35] H. Ren. Color Superconductivity in a Dense Quark Matter , 2003, hep-ph/0307125.
[36] D. J. Fixsen,et al. Cosmic‐Ray Rejection and Readout Efficiency for Large‐Area Arrays , 2000, astro-ph/0005486.
[37] Fons Rademakers,et al. ROOT — An object oriented data analysis framework , 1997 .
[38] M. F. Jiang,et al. Thermodynamic properties of superconducting nuclear matter , 1988 .
[39] T. Egidy. Interaction and annihilation of antiprotons and nuclei , 1987, Nature.
[40] Huang,et al. Structure of axionic domain walls. , 1985, Physical review. D, Particles and fields.
[41] P. Sikivie. On the interaction of magnetic monopoles with axionic domain walls , 1984 .
[42] S. Glashow,et al. Nuclearites—a novel form of cosmic radiation , 1984, Nature.
[43] T. Gaisser,et al. Flux of atmospheric neutrinos. , 1983, Physical review. D, Particles and fields.
[44] A. Vilenkin,et al. Cosmic strings and domain walls in models with Goldstone and pseudo Goldstone bosons , 1982 .
[45] T. Kibble,et al. Some Implications of a Cosmological Phase Transition , 1980 .
[46] V. Hughes,et al. Atom-Antiatom Interactions , 1973 .
[47] R. S. Mulliken. Potential Curves of Diatomic Rare‐Gas Molecules and Their Ions, with Particular Reference to Xe2 , 1970 .
[48] G. Goldhaber,et al. Antiproton-Nucleon Annihilation Process. II , 1959 .
[49] Edwax 'd % 'itten. Cosmic separation of phases , 2011 .
[50] Vlachoudis. FLAIR: A POWERFUL BUT USER FRIENDLY GRAPHICAL INTERFACE FOR FLUKA , 2009 .
[51] Ariel R. Zhitnitsky. `Nonbaryonic' dark matter as baryonic colour superconductor , 2003 .
[52] A. Sakharov. Violation of Cp-Invariance C-Asymmetry and Baryon Asymmetry of the Universe , 1998 .