Camelid nanobodies: killing two birds with one stone.

[1]  G. Chang,et al.  In vitro nanobody discovery for integral membrane protein targets , 2014, Scientific Reports.

[2]  R. Dutzler,et al.  Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport , 2014, Nature Structural &Molecular Biology.

[3]  F. Speleman,et al.  A nanobody modulates the p53 transcriptional program without perturbing its functional architecture , 2014, Nucleic acids research.

[4]  F. Perez,et al.  Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies , 2014, Microbial Cell Factories.

[5]  M. Rudolph,et al.  Crystal structures of ricin toxin's enzymatic subunit (RTA) in complex with neutralizing and non-neutralizing single-chain antibodies. , 2014, Journal of molecular biology.

[6]  H. Ploegh,et al.  How lamina-associated polypeptide 1 (LAP1) activates Torsin , 2014, eLife.

[7]  T. Tomizaki,et al.  X-ray structure of the mouse serotonin 5-HT3 receptor , 2014, Nature.

[8]  E. Pardon,et al.  The Molecular Mechanism of Shiga Toxin Stx2e Neutralization by a Single-domain Antibody Targeting the Cell Receptor-binding Domain , 2014, The Journal of Biological Chemistry.

[9]  S. Benichou,et al.  Structural basis for the inhibition of HIV-1 Nef by a high-affinity binding single-domain antibody , 2014, Retrovirology.

[10]  S. Muyldermans,et al.  A general protocol for the generation of Nanobodies for structural biology , 2014, Nature Protocols.

[11]  F. Förster,et al.  Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11 , 2014, Proceedings of the National Academy of Sciences.

[12]  S. Knapp,et al.  Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies , 2014, The Biochemical journal.

[13]  Giuseppe Legname,et al.  Probing the N-terminal β-sheet conversion in the crystal structure of the human prion protein bound to a nanobody. , 2014, Journal of the American Chemical Society.

[14]  J. Tanha,et al.  Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile* , 2013, The Journal of Biological Chemistry.

[15]  J. Wess,et al.  Activation and allosteric modulation of a muscarinic acetylcholine receptor , 2013, Nature.

[16]  C. Dobson,et al.  A nanobody binding to non-amyloidogenic regions of the protein human lysozyme enhances partial unfolding but inhibits amyloid fibril formation. , 2013, The journal of physical chemistry. B.

[17]  J. Steyaert,et al.  Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli. , 2013, Biochimica et biophysica acta.

[18]  E. Pardon,et al.  Structure of an early native‐like intermediate of β2‐microglobulin amyloidogenesis , 2013, Protein science : a publication of the Protein Society.

[19]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[20]  C. Verlinde,et al.  The structure of the D3 domain of Plasmodium falciparum myosin tail interacting protein MTIP in complex with a nanobody. , 2013, Molecular and biochemical parasitology.

[21]  E. Pardon,et al.  Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain , 2013, Proceedings of the National Academy of Sciences.

[22]  J. Mascola,et al.  Heavy Chain-Only IgG2b Llama Antibody Effects Near-Pan HIV-1 Neutralization by Recognizing a CD4-Induced Epitope That Includes Elements of Coreceptor- and CD4-Binding Sites , 2013, Journal of Virology.

[23]  R. Roovers,et al.  Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. , 2013, Structure.

[24]  Serge Muyldermans,et al.  Nanobodies: natural single-domain antibodies. , 2013, Annual review of biochemistry.

[25]  A. Desmyter,et al.  Viral infection modulation and neutralization by camelid nanobodies , 2013, Proceedings of the National Academy of Sciences.

[26]  D. Veesler,et al.  Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism , 2012, Proceedings of the National Academy of Sciences.

[27]  C. Verrips,et al.  Enhancement of Polymeric Immunoglobulin Receptor Transcytosis by Biparatopic VHH , 2011, PloS one.

[28]  Jan Steyaert,et al.  Nanobody stabilization of G protein-coupled receptor conformational states. , 2011, Current opinion in structural biology.

[29]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[30]  R. Leurs,et al.  CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells , 2010, Proceedings of the National Academy of Sciences.

[31]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[32]  G. Sciara,et al.  Structure of lactococcal phage p2 baseplate and its mechanism of activation , 2010, Proceedings of the National Academy of Sciences.

[33]  W. Hol,et al.  Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. , 2009, Journal of structural biology.

[34]  C. Francavilla,et al.  Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library. , 2009, Protein engineering, design & selection : PEDS.

[35]  J. Stam,et al.  Improved anti-IgG and HSA affinity ligands: clinical application of VHH antibody technology. , 2007, Journal of immunological methods.

[36]  J. D. den Dunnen,et al.  Reliable and controllable antibody fragment selections from Camelid non-immune libraries for target validation. , 2006, Biochimica et biophysica acta.

[37]  J. Boonstra,et al.  Specific production rate of VHH antibody fragments by Saccharomyces cerevisiae is correlated with growth rate, independent of nutrient limitation. , 2005, Journal of biotechnology.

[38]  Sylvain Moineau,et al.  Llama Antibodies against a Lactococcal Protein Located at the Tip of the Phage Tail Prevent Phage Infection , 2005, Journal of bacteriology.

[39]  J. W. Bos,et al.  Bactericidal Effects of a Fusion Protein of Llama Heavy-Chain Antibodies Coupled to Glucose Oxidase on Oral Bacteria , 2004, Antimicrobial Agents and Chemotherapy.

[40]  L. Wyns,et al.  Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology. , 2002, The Journal of biological chemistry.

[41]  C. Cambillau,et al.  Lateral recognition of a dye hapten by a llama VHH domain. , 2001, Journal of molecular biology.

[42]  L. Wyns,et al.  Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. , 2001, Trends in biochemical sciences.

[43]  B. de Geus,et al.  Improved production and function of llama heavy chain antibody fragments by molecular evolution. , 2000, Journal of biotechnology.

[44]  Lode Wyns,et al.  Potent enzyme inhibitors derived from dromedary heavy‐chain antibodies , 1998, The EMBO journal.

[45]  Dominique Bourgeois,et al.  The crystal structure of a llama heavy chain variable domain , 1996, Nature Structural Biology.

[46]  Lode Wyns,et al.  Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme , 1996, Nature Structural Biology.

[47]  S. Muyldermans,et al.  Naturally occurring antibodies devoid of light chains , 1993, Nature.

[48]  A. Marco Co-expression and co-purification of antigen-antibody complexes in bacterial cytoplasm and periplasm. , 2014 .

[49]  A. de Marco,et al.  Preparation of a naïve library of camelid single domain antibodies. , 2012, Methods in molecular biology.