Averages of automatic sequences

We give some sufficient criteria for the existence of certain averages (mean, correlation functions) of generalized higher-dimensional automatic sequences and show how to calculate these averages. Then follows an exploration of the nature of necessary and sufficient conditions for the existence of averages. Some of these criteria are applied to averages which play a central role in the determination of the correlation function of an automatic sequence.

[1]  André Barbé,et al.  Correlation and Spectral Properties of Multidimensional Thue-morse Sequences , 2007, Int. J. Bifurc. Chaos.

[2]  Imre Kátai,et al.  Generalized number systems in Euclidean spaces , 2003 .

[3]  Guentcho Skordev,et al.  Decimation-invariant sequences and their automaticity , 2001, Theor. Comput. Sci..

[4]  David W. Matula,et al.  Basic digit sets for radix representation , 1982, JACM.

[5]  N. Frank Multidimensional constant-length substitution sequences , 2005 .

[6]  A. Barbé,et al.  Correlation and spectral properties of higher-dimensional paperfolding and Rudin–Shapiro sequences , 2005 .

[7]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[8]  A. Barbé,et al.  Automatic sets and Delone sets , 2004 .

[10]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[11]  Michael Baake,et al.  Surprises in diffuse scattering , 2000, math-ph/0004022.

[12]  J. Shallit,et al.  Automatic Sequences: Frequency of Letters , 2003 .

[13]  N. Frank Substitution sequences in \mathbb{Z}^{d} with a non-simple Lebesgue component in the spectrum , 2003, Ergodic Theory and Dynamical Systems.

[14]  M. Senechal Quasicrystals and geometry , 1995 .

[15]  André Barbé,et al.  Symmetries of decimation invariant sequences and digit sets , 2002, Theor. Comput. Sci..

[16]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[17]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[18]  A. Barbé,et al.  Correlation functions of higher-dimensional automatic sequences , 2004 .

[19]  Michael Baake,et al.  A Guide to Mathematical Quasicrystals , 2002 .