Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth

Single-mode vertical-cavity surface-emitting lasers based on dense arrays of stacked submonolayer grown InGaAs quantum dots, emitting near 980nm, demonstrate a modulation bandwidth of 10.5GHz. A low threshold current of 170μA, high differential efficiency of 0.53W∕A, and high modulation current efficiency factor of 14GHz∕mA are realized from a 1μm oxide aperture single-mode device with a side mode suppression ratio of >40dB and peak output power of >1mW. The lasers are also suitable for high temperature operation.

[1]  G. Eisenstein,et al.  The impact of energy band diagram and inhomogeneous broadening on the optical differential gain in nanostructure lasers , 2005, IEEE Journal of Quantum Electronics.

[2]  Daniel M. Kuchta,et al.  15.6-Gb/s transmission over 1 km of next generation multimode fiber , 2002 .

[3]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[4]  Peter Michael Smowton,et al.  Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers , 2002 .

[5]  Kent D. Choquette,et al.  High-frequency modulation of oxide- confined vertical cavity surface emitting lasers , 1996 .

[6]  Sasan Fathpour,et al.  High-speed quantum dot lasers , 2005 .

[7]  Mikhail V. Maximov,et al.  0.94 µm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots , 2000 .

[8]  Nikolai N. Ledentsov,et al.  3.9 W CW power from sub-monolayer quantum dot diode laser , 1999 .

[9]  Friedhelm Hopfer,et al.  Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors , 2002 .

[10]  Nikolai N. Ledentsov,et al.  Epitaxy of Nanostructures , 2003 .

[11]  Nikolai N. Ledentsov,et al.  Direct modulation and mode locking of 1.3 μm quantum dot lasers , 2004 .

[12]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[13]  Richard Schatz,et al.  Quest for very high speed VCSELs: pitfalls and clues , 2001, SPIE OPTO.

[14]  Nikolai N. Ledentsov,et al.  Self-Organized InGaAs Quantum Dots for Advanced Applications in Optoelectronics , 2002 .