暂无分享,去创建一个
Hector Zenil | Francisco Hernández Quiroz | Santiago Hernández-Orozco | Wilfried Sieg | H. Zenil | Santiago Hernández-Orozco | W. Sieg | F. H. Quiroz
[1] Gerd Folkers,et al. On computable numbers , 2016 .
[2] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[3] Kurt Gödel,et al. On Formally Undecidable Propositions of Principia Mathematica and Related Systems , 1966 .
[4] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[5] Kenneth Kunen,et al. Set Theory: An Introduction to Independence Proofs , 2010 .
[6] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.
[7] Wilfried Sieg,et al. Normal Natural Deduction Proofs (in classical logic) , 1998, Stud Logica.
[8] Michael Alekhnovich,et al. Minimum propositional proof length is NP-hard to linearly approximate , 1998, Journal of Symbolic Logic.
[9] Valentin Goranko,et al. Logic in Computer Science: Modelling and Reasoning About Systems , 2007, J. Log. Lang. Inf..
[10] Marcus Hutter,et al. Algorithmic Information Theory , 1977, IBM J. Res. Dev..
[11] M. W. Shields. An Introduction to Automata Theory , 1988 .
[12] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[13] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[14] Wilfried Sieg,et al. The AProS Project: Strategic Thinking & Computational Logic , 2007, Log. J. IGPL.
[15] Hector Zenil,et al. Program-Size versus Time Complexity, Speed-Up and Slowdown Phenomena in Small Turing Machines , 2011, ArXiv.
[16] Paul M. B. Vitányi,et al. Clustering by compression , 2003, IEEE Transactions on Information Theory.
[17] Hector Zenil,et al. Computer Runtimes and the Length of Proofs - With an Algorithmic Probabilistic Application to Waiting Times in Automatic Theorem Proving , 2012, Computation, Physics and Beyond.