The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems
暂无分享,去创建一个
Edwige Godlewski | Pierre-Arnaud Raviart | Kim-Claire Le Thanh | P. Raviart | E. Godlewski | K. L. Thanh
[1] Jérôme Jaffré,et al. Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space , 2004, SIAM J. Numer. Anal..
[2] Claus-Dieter Munz,et al. Approximate Riemann Solvers for Fluid Flow with Material Interfaces , 1998 .
[3] Stefan Diehl,et al. On scalar conservation laws with point source and discontinuous flux function , 1995 .
[4] S. Osher,et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .
[5] P. Floch,et al. Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .
[6] Gérard Gallice,et al. Positive and Entropy Stable Godunov-type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates , 2003, Numerische Mathematik.
[7] Nils Henrik Risebro,et al. STABILITY OF CONSERVATION LAWS WITH DISCONTINUOUS COEFFICIENTS , 1999 .
[8] B. Perthame,et al. Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[9] John D. Towers,et al. Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient , 2002 .
[10] Siam Staff,et al. Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space , 2004 .
[11] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.
[12] Bruno Després,et al. Lagrangian systems of conservation laws , 2001, Numerische Mathematik.
[13] Rémi Abgrall,et al. Computations of compressible multifluids , 2001 .
[14] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[15] Modélisation mathématique et numérique de la cavitation dans les écoulements multiphasiques compressibles , 2002 .
[16] Christian Klingenberg,et al. Stability of a Resonant System of Conservation Laws Modeling Polymer Flow with Gravitation , 2001 .
[17] J. Greenberg,et al. Analysis and Approximation of Conservation Laws with Source Terms , 1997 .
[18] E. Isaacson,et al. Nonlinear resonance in systems of conservation laws , 1992 .
[19] Thierry Pougeard-Dulimbert. Extraction de faisceaux d'ions à partir de plasmas neutres : modélisation et simulation numérique , 2001 .
[20] Nicolas Seguin,et al. ANALYSIS AND APPROXIMATION OF A SCALAR CONSERVATION LAW WITH A FLUX FUNCTION WITH DISCONTINUOUS COEFFICIENTS , 2003 .
[21] Siddhartha Mishra. Convergence of Upwind Finite Difference Schemes for a Scalar Conservation Law with Indefinite Discontinuities in the Flux Function , 2005, SIAM J. Numer. Anal..
[22] Randall J. LeVeque,et al. A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions , 2002, SIAM J. Sci. Comput..
[23] Denis Serre,et al. Conditions aux limites pour un système strictement hyperbolique fournies, par le schéma de Godunov , 1997 .
[24] M. Gisclon,et al. Etude des conditions aux limites pour des systèmes strictement hyperboliques, via l'approximation parabolique , 1994 .
[25] W. Lyons,et al. Conservation laws with sharp inhomogeneities , 1983 .
[26] Claus-Dieter Munz,et al. On Godunov-type schemes for Lagrangian gas dynamics , 1994 .
[27] A. Visintin,et al. Theoretical and numerical results on the two-phase stefan problem , 1989 .
[28] John D. Towers. A Difference Scheme for Conservation Laws with a Discontinuous Flux: The Nonconvex Case , 2001, SIAM J. Numer. Anal..
[29] S. P. Gill,et al. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .
[30] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .