Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O

The amount of solar power striking the earth’s surface is vastly superior to humanity’s present day energy needs and can easily meet our increasing power demands as the world’s population grows. In order to make solar power cost competitive with fossil fuels, the conversion devices must be made as cheaply as possible, which necessitates the use of abundant raw materials and low energy intensity fabrication processes. Cuprous oxide (Cu2O) is a promising material with the capacity for low cost, large-scale solar energy conversion due to the abundant nature of copper and oxygen, suitable bandgap for absorption of visible light, as well as effective, low energy intensity fabrication processes such as electrodeposition. For photoelectrochemical (PEC) water splitting, protective overlayers have been developed that greatly extend the durability of hydrogen-evolving Cu2O-based materials. Recent developments in the advancement of protective overlayers for stabilizing photoabsorber materials for water splitting are...

[1]  Yan-Gu Lin,et al.  Fabrication of homojunction Cu2O solar cells by electrochemical deposition , 2015 .

[2]  Nathan S. Lewis,et al.  Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators , 2015 .

[3]  Ib Chorkendorff,et al.  Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes , 2015 .

[4]  Changli Li,et al.  Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer , 2015 .

[5]  Kevin P. Musselman,et al.  Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance , 2015 .

[6]  Kimberly M. Papadantonakis,et al.  Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films , 2015, Proceedings of the National Academy of Sciences.

[7]  M. Panzer,et al.  Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. , 2015, ACS applied materials & interfaces.

[8]  M. Grätzel,et al.  Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst , 2015 .

[9]  Yuki Nishi,et al.  Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet , 2015 .

[10]  Yue Zhang,et al.  Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells. , 2015, ACS applied materials & interfaces.

[11]  P. Ekins,et al.  The geographical distribution of fossil fuels unused when limiting global warming to 2 °C , 2015, Nature.

[12]  Dunwei Wang,et al.  Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. , 2014, Angewandte Chemie.

[13]  Michael Grätzel,et al.  Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. , 2014, Angewandte Chemie.

[14]  C. Sousa,et al.  On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing , 2014 .

[15]  Nathan S. Lewis,et al.  An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system , 2014 .

[16]  Frances A. Houle,et al.  Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting , 2014 .

[17]  J. Bisquert,et al.  Calculation of the Energy Band Diagram of a Photoelectrochemical Water Splitting Cell , 2014, 1407.5774.

[18]  Ib Chorkendorff,et al.  2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs , 2014 .

[19]  Jian V. Li,et al.  Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells , 2014, Advanced materials.

[20]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[21]  J. Barber,et al.  Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water. , 2014, Nanoscale.

[22]  O. Hansen,et al.  Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films. , 2014, The journal of physical chemistry letters.

[23]  Kevin Sivula,et al.  A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting , 2014 .

[24]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[25]  Ib Chorkendorff,et al.  Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution , 2013 .

[26]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[27]  T. Oku,et al.  Fabrication and Characterization of ZnO/Cu2O Solar Cells Prepared by Electrodeposition , 2013 .

[28]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[29]  Jonathan P. Mailoa,et al.  Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells , 2013 .

[30]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[31]  Yuki Nishi,et al.  High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .

[32]  Yuki Nishi,et al.  The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells , 2013 .

[33]  Arie Zaban,et al.  All-Oxide Photovoltaics. , 2012, The journal of physical chemistry letters.

[34]  Aiping Chen,et al.  Growth of ∼5 cm2V−1s−1 mobility, p-type Copper(I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225°C and below , 2012 .

[35]  Chia-Yu Lin,et al.  Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting , 2012 .

[36]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[37]  Sui-hu Dang,et al.  p-Cu2O/n-ZnO heterojunction fabricated by hydrothermal method , 2012 .

[38]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[39]  M. Eickhoff,et al.  Binary copper oxide semiconductors: From materials towards devices , 2012 .

[40]  K. Musselman,et al.  Incompatible Length Scales in Nanostructured Cu2O Solar Cells , 2012 .

[41]  Bingqiang Cao,et al.  Photovoltaic Efficiency Enhancement of Cu2O Solar Cells Achieved by Controlling Homojunction Orientation and Surface Microstructure , 2012 .

[42]  Kyoung-Shin Choi,et al.  Junction studies on electrochemically fabricated p-n Cu(2)O homojunction solar cells for efficiency enhancement. , 2012, Physical chemistry chemical physics : PCCP.

[43]  Jan C. Brauer,et al.  Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy , 2012 .

[44]  Peng Wang,et al.  Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy , 2012 .

[45]  Szu-Ying Chen,et al.  Solution-processed all-oxide nanostructures for heterojunction solar cells , 2011 .

[46]  Xile Hu,et al.  Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts , 2011 .

[47]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[48]  Yuki Nishi,et al.  High-Efficiency Oxide Solar Cells with ZnO/Cu2O Heterojunction Fabricated on Thermally Oxidized Cu2O Sheets , 2011 .

[49]  M. A. Khan,et al.  Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications , 2011 .

[50]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[51]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[52]  C. Malerba,et al.  Chlorine doping of Cu2O , 2010 .

[53]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.

[54]  Kyoung-Shin Choi,et al.  Effect of Junction Morphology on the Performance of Polycrystalline Cu2O Homojunction Solar Cells , 2010 .

[55]  David O. Scanlon,et al.  Undoped n-Type Cu2O: Fact or Fiction? , 2010 .

[56]  Kunhee Han,et al.  Characterization of Cl-doped n-type Cu2O prepared by electrodeposition , 2010 .

[57]  Qiyuan He,et al.  Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes , 2010 .

[58]  U. Gibson,et al.  A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells , 2010 .

[59]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[60]  D. Nocera Chemistry of personalized solar energy. , 2009, Inorganic chemistry.

[61]  Aron Walsh,et al.  Acceptor levels in p-type Cu(2)O: rationalizing theory and experiment. , 2009, Physical review letters.

[62]  H. Teng,et al.  Elucidating the Conductivity-Type Transition Mechanism of p-Type Cu2O Films from Electrodeposition , 2009 .

[63]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[64]  Kyoung-Shin Choi,et al.  Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. , 2009, Journal of the American Chemical Society.

[65]  Minoru Inaba,et al.  Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device , 2007 .

[66]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[67]  S. Ishizuka,et al.  Thin film deposition of Cu2O and application for solar cells , 2006 .

[68]  T. Sakurai,et al.  Defects in Cu2O studied by deep level transient spectroscopy , 2006 .

[69]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[70]  Hideki Tanaka,et al.  Electrical and optical properties of TCO–Cu2O heterojunction devices , 2004 .

[71]  M. Matsuoka,et al.  Performance of Cu2O/ZnO Solar Cell Prepared By Two-Step Electrodeposition , 2004 .

[72]  Hideki Tanaka,et al.  High-Efficiency Oxide Heterojunction Solar Cells Using Cu2O Sheets , 2004 .

[73]  Y. Okamoto,et al.  Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐magnetron sputtering , 2004 .

[74]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[75]  A. F. Wright,et al.  Theory of the copper vacancy in cuprous oxide , 2002 .

[76]  D. Keszler,et al.  Low-Temperature Thin-Film Deposition and Crystallization , 2002, Science.

[77]  C. Fernando,et al.  Investigation of photoelectrochemical characteristics of n-type Cu2O films , 2000 .

[78]  Sergio Trasatti,et al.  Electrocatalysis: understanding the success of DSA® , 2000 .

[79]  P. D. Jongh,et al.  Photoelectrochemistry of Electrodeposited Cu2 O , 2000 .

[80]  C. Jayewardena,et al.  Fabrication of n-Cu2O electrodes with higher energy conversion efficiency in a photoelectrochemical cell , 1998 .

[81]  O. Porat,et al.  Defect chemistry of Cu2−yO at elevated temperatures. Part I: Non-stoichiometry, phase width and dominant point defects , 1994 .

[82]  L. Papadimitriou DLTS evaluation of nonexponential transients of defect levels in cuprous oxide (Cu2O) , 1993 .

[83]  M. Takeuchi,et al.  Photoelectrochemical behavior of Cu2O single crystals in liquid electrolytes , 1988 .

[84]  S. Stucki,et al.  Ruthenium dioxide as a hydrogen-evolving cathode , 1987 .

[85]  L. C. Olsen,et al.  Experimental and theoretical studies of Cu2O solar cells , 1982 .

[86]  Paul A. Kohl,et al.  Semiconductor Electrodes XI . Behavior of n‐ and p‐Type Single Crystal Semconductors Covered with Thin Films , 1977 .

[87]  J. Bockris,et al.  Photoelectrochemical processes: The prevention of competitive anodic dissolution of the photon absorber in hydrogen production , 1976 .

[88]  R. Elliott Symmetry of Excitons in Cu 2 O , 1961 .

[89]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[90]  W. Brattain The Copper Oxide Rectifier , 1951 .

[91]  L. O. Grondahl The Copper-Cuprous-Oxide Rectifier and Photoelectric Cell , 1933 .

[92]  B. Hwang,et al.  Supporting Information Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction , 2015 .

[93]  Kimberly M. Papadantonakis,et al.  A taxonomy for solar fuels generators , 2015 .

[94]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[95]  L. Peter,et al.  Photoelectrochemical water splitting : materials, processes and architectures , 2013 .

[96]  Deren Yang,et al.  Electrochemically Deposited Cu2O on TiO2 Nanorod Arrays for Photovoltaic Application , 2011 .

[97]  E. Sakai,et al.  Wet Etching of TiO2-Based Precursor Amorphous Films for Transparent Electrodes , 2011 .

[98]  Derek Abbott,et al.  Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? , 2010, Proceedings of the IEEE.

[99]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[100]  Meng Tao,et al.  Electrochemically deposited p–n homojunction cuprous oxide solar cells , 2009 .

[101]  S. Passerini,et al.  Electrodeposited ZnO/Cu2O heterojunction solar cells , 2008 .

[102]  Hideo Hosono,et al.  Mechano-catalytic overall water splitting , 1998 .

[103]  Kazunari Domen,et al.  Cu2O as a photocatalyst for overall water splitting under visible light irradiation , 1998 .

[104]  Sourabh Dutta,et al.  Technology assessment of advanced electrolytic hydrogen production , 1990 .

[105]  N. L. Peterson,et al.  Diffusion and point defects in Cu2O , 1984 .

[106]  L. C. Olsen,et al.  Explanation for low‐efficiency Cu2O Schottky‐barrier solar cells , 1979 .