Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis

This paper describes the results of dynamic tests performed to study the robustness of a dynamics model of an industrial manipulator. The tests show that the joint friction changes during the robot operation. The variation can be identified in a double exponential law and thus the variation can be predicted. The variation is due to the heat generated by the friction. A model is used to estimate the temperature and related friction variation. Experimental data collected on two robots EFORT ER3A-C60 are presented and discussed. Repetitive tests performed on different days showed that the inertial and friction parameters can be robustly estimated and that the value of the measured joint friction can be used to estimate the unexpected conditions of the joints. Future applications may include sensorless identification of collisions, predictive maintenance programs, or human–robot interaction.

[1]  Y. F. Liu,et al.  Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system , 2015 .

[2]  Patrik Axelsson,et al.  Modeling and Experiment Design for Identification of Wear in a Robot Joint Under Load and Temperature Uncertainties Based on Friction Data , 2014, IEEE/ASME Transactions on Mechatronics.

[3]  Stefan Björklund,et al.  Friction models for sliding dry, boundary and mixed lubricated contacts , 2007 .

[4]  Giovanni Carabin,et al.  On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems † , 2020, Robotics.

[5]  Lőrinc Márton,et al.  Temperature dependent friction estimation: Application to lubricant health monitoring , 2012 .

[6]  Antonio Visioli,et al.  A virtual force sensor for interaction tasks with conventional industrial robots , 2018 .

[7]  Bartolomeo Della Corte,et al.  Least Squares Optimization: from Theory to Practice , 2020, Robotics.

[8]  F. Kennedy,et al.  Frictional Heating and Contact Temperatures , 2000 .

[9]  David L. Trumper,et al.  Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance , 2014 .

[10]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[11]  Hubert Gattringer,et al.  A persistent method for parameter identification of a seven-axes manipulator , 2015, Robotica.

[12]  Paolo Rocco,et al.  Single and multistate integral friction models , 2004, IEEE Transactions on Automatic Control.

[13]  Jan Swevers,et al.  Generation of periodic trajectories for optimal robot excitation , 1994 .

[14]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[15]  Roberto Pagani,et al.  Modelling and Evaluation of the Friction in Robotic Joints Considering Thermal Effects , 2019 .

[16]  Jorge Ambrósio,et al.  On the contact detection for contact-impact analysis in multibody systems , 2010 .

[17]  M. Gautier Numerical calculation of the base inertial parameters of robots , 1991, J. Field Robotics.

[18]  Antonio Visioli,et al.  A New Friction Model for Mechanical Transmissions Considering Joint Temperature , 2016 .

[19]  K.J. Astrom,et al.  Revisiting the LuGre friction model , 2008, IEEE Control Systems.

[20]  T. Piątkowski GMS friction model approximation , 2014 .

[21]  Ilian A. Bonev,et al.  Characterization and experimental evaluation of gear transmission errors in an industrial robot , 2013, Ind. Robot.

[22]  B. Armstrong-Hélouvry Stick slip and control in low-speed motion , 1993, IEEE Trans. Autom. Control..

[23]  Nathan van de Wouw,et al.  Friction compensation in a controlled one-link robot using a reduced-order observer , 2004, IEEE Transactions on Control Systems Technology.

[24]  Antonio Visioli,et al.  On the Inclusion of Temperature in the Friction Model of Industrial Robots , 2017 .

[25]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[26]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[27]  M. Ruderman Presliding hysteresis damping of LuGre and Maxwell-slip friction models , 2015 .

[28]  Leonid B. Freidovich,et al.  LuGre-Model-Based Friction Compensation , 2010, IEEE Transactions on Control Systems Technology.

[29]  Giulio Rosati,et al.  Human-Robot Collaboration in Manufacturing Applications: A Review , 2019, Robotics.

[30]  A. C. Bittencourt,et al.  Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects , 2012 .

[31]  Roberto Pagani,et al.  Evaluation and Modeling of the Friction in Robotic Joints Considering Thermal Effects , 2020 .

[32]  Takeo Kanade,et al.  Real-time implementation and evaluation of the computed-torque scheme , 1989, IEEE Trans. Robotics Autom..

[33]  Antonio Visioli,et al.  Modelling the temperature in joint friction of industrial manipulators , 2019, Robotica.