A posteriori error estimates for the mortar staggered DG method

Two residual-type error estimators for the mortar staggered discontinuous Galerkin discretizations of second order elliptic equations are developed. Both error estimators are proved to be reliable and efficient. Key to the derivation of the error estimator in potential $L^2$ error is the duality argument. On the other hand, an auxiliary function is defined, making it capable of decomposing the energy error into conforming part and nonconforming part, which can be combined with the well-known Scott-Zhang local quasi-interpolation operator and the mortar discrete formulation yields an error estimator in energy error. Importantly, our analysis for both error estimators does not require any saturation assumptions which are often needed in the literature. Several numerical experiments are presented to confirm our proposed theories.

[1]  Kwang Y. Kim A posteriori error analysis for locally conservative mixed methods , 2007, Math. Comput..

[2]  Eric T. Chung,et al.  Mortar formulation for a class of staggered discontinuous Galerkin methods , 2016, Comput. Math. Appl..

[3]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[4]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[5]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[6]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[7]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[8]  Dongho Kim,et al.  A Priori and A Posteriori Analysis of Mixed Finite Element Methods for Nonlinear Elliptic Equations , 2010, SIAM J. Numer. Anal..

[9]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[10]  Eric T. Chung,et al.  Analysis of an SDG Method for the Incompressible Navier-Stokes Equations , 2017, SIAM J. Numer. Anal..

[11]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..

[12]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[15]  Eric T. Chung,et al.  A Mass Conservative Scheme for Fluid–Structure Interaction Problems by the Staggered Discontinuous Galerkin Method , 2018, J. Sci. Comput..

[16]  Jeonghun J. Lee,et al.  Analysis of a Staggered Discontinuous Galerkin Method for Linear Elasticity , 2015, Journal of Scientific Computing.

[17]  Feng Wang,et al.  Some new residual-based a posteriori error estimators for the mortar finite element methods , 2012, Numerische Mathematik.

[18]  Mary F. Wheeler,et al.  A Posteriori Error Estimates for the Mortar Mixed Finite Element Method , 2005, SIAM J. Numer. Anal..

[19]  Lina Zhao,et al.  A priori and a posteriori error analysis of a staggered discontinuous Galerkin method for convection dominant diffusion equations , 2019, J. Comput. Appl. Math..

[20]  Eric T. Chung,et al.  The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow , 2015, Journal of Scientific Computing.

[21]  Frédéric Hecht,et al.  Error indicators for the mortar finite element discretization of the Laplace equation , 2002, Math. Comput..

[22]  Eric T. Chung,et al.  Discontinuous Galerkin Method with Staggered Hybridization for a Class of Nonlinear Stokes Equations , 2018, J. Sci. Comput..

[23]  Lina Zhao,et al.  Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method , 2018, J. Sci. Comput..

[24]  Dongho Kim,et al.  A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem , 2011, SIAM J. Numer. Anal..

[25]  Martin Vohralík Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..

[26]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..

[27]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[28]  Barbara Wohlmuth,et al.  Hierarchical A Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers , 1999 .

[29]  Eric T. Chung,et al.  An Adaptive Staggered Discontinuous Galerkin Method for the Steady State Convection–Diffusion Equation , 2018, J. Sci. Comput..

[30]  Mats G. Larson,et al.  CHALMERS FINITE ELEMENT CENTER , 2022 .

[31]  Eric T. Chung,et al.  The Staggered DG Method is the Limit of a Hybridizable DG Method , 2014, SIAM J. Numer. Anal..

[32]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.

[33]  Barbara I. Wohlmuth,et al.  A residual based error estimator for mortar finite element discretizations , 1999, Numerische Mathematik.

[34]  Dongho Kim,et al.  A posteriori error estimators for the upstream weighting mixed methods for convection diffusion problems , 2008 .

[35]  Lina Zhao,et al.  A Staggered Discontinuous Galerkin Method of Minimal Dimension on Quadrilateral and Polygonal Meshes , 2018, SIAM J. Sci. Comput..

[36]  C. Carstensen,et al.  Robust residual-based a posteriori Arnold–Winther mixed finite element analysis in elasticity ☆ , 2016 .

[37]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[38]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[39]  Mary F. Wheeler,et al.  A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74 , 2003 .

[40]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .