DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome-wide

[1]  D. Fachinetti,et al.  A method to enrich and purify centromeric DNA from human cells , 2021, bioRxiv.

[2]  Aaron M. Streets,et al.  Complete genomic and epigenetic maps of human centromeres , 2021, bioRxiv.

[3]  A. Straight,et al.  CENP-N promotes the compaction of centromeric chromatin , 2021, bioRxiv.

[4]  Mitchell R. Vollger,et al.  Epigenetic Patterns in a Complete Human Genome , 2021, bioRxiv.

[5]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[6]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[7]  William T. Harvey,et al.  The structure, function and evolution of a complete human chromosome 8 , 2020, Nature.

[8]  Fidel Ramírez,et al.  pyGenomeTracks: reproducible plots for multivariate genomic datasets , 2020, Bioinform..

[9]  Aaron A. Comeault,et al.  Highly contiguous assemblies of 101 drosophilid genomes , 2020, bioRxiv.

[10]  V. Beneš,et al.  Molecular Co-occupancy Identifies Transcription Factor Binding Cooperativity In Vivo. , 2020, Molecular cell.

[11]  B. van Steensel,et al.  Cell cycle dynamics of lamina‐associated DNA , 2020, EMBO reports.

[12]  Aaron M. Streets,et al.  μDamID: A Microfluidic Approach for Joint Imaging and Sequencing of Protein-DNA Interactions in Single Cells , 2020, Cell systems.

[13]  J. Stamatoyannopoulos,et al.  Single-molecule regulatory architectures captured by chromatin fiber sequencing , 2020, Science.

[14]  A. Straight,et al.  Identification and characterization of centromeric sequences in Xenopus laevis , 2020, bioRxiv.

[15]  J. Underwood,et al.  Massively multiplex single-molecule oligonucleosome footprinting , 2020, bioRxiv.

[16]  Chirag Jain,et al.  Weighted minimizer sampling improves long read mapping , 2020, bioRxiv.

[17]  M. Schatz,et al.  Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED , 2020, Nature Biotechnology.

[18]  S. Sukumar,et al.  Targeted nanopore sequencing with Cas9-guided adaptor ligation , 2020, Nature Biotechnology.

[19]  K. Pollard,et al.  Molecular basis of CTCF binding polarity in genome folding , 2019, Nature Communications.

[20]  J. Simpson,et al.  Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing , 2018, bioRxiv.

[21]  B. van Steensel,et al.  Cell cycle dynamics of lamina associated DNA , 2019, bioRxiv.

[22]  Wouter De Coster,et al.  Methplotlib: analysis of modified nucleotides from nanopore sequencing , 2019, bioRxiv.

[23]  Sergey Koren,et al.  Telomere-to-telomere assembly of a complete human X chromosome , 2019, bioRxiv.

[24]  Sergey Koren,et al.  Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome , 2019, Nature Biotechnology.

[25]  Steven Henikoff,et al.  Improved CUT&RUN chromatin profiling tools , 2019, eLife.

[26]  Tao Liu,et al.  Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA , 2019, BMC Genomics.

[27]  K. Au,et al.  Single-molecule long-read sequencing reveals the chromatin basis of gene expression , 2019, bioRxiv.

[28]  Nicholas A. Sinnott-Armstrong,et al.  Long-range single-molecule mapping of chromatin accessibility in eukaryotes , 2018, Nature Methods.

[29]  J. Boulay,et al.  MadID, a Versatile Approach to Map Protein-DNA Interactions, Highlights Telomere-Nuclear Envelope Contact Sites in Human Cells , 2018, Cell reports.

[30]  Shannon M. McNulty,et al.  Alpha satellite DNA biology: finding function in the recesses of the genome , 2018, Chromosome Research.

[31]  Shannon M. McNulty,et al.  Alpha satellite DNA biology: finding function in the recesses of the genome , 2018, Chromosome Research.

[32]  A. Straight,et al.  Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell , 2018, Molecular biology of the cell.

[33]  Steven Henikoff,et al.  An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites , 2016, bioRxiv.

[34]  M. E. Aldrup-MacDonald,et al.  Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles , 2016, Genome research.

[35]  Siddharth S. Dey,et al.  Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells , 2015, Cell.

[36]  C. J. Fuller,et al.  A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance , 2015, The Journal of cell biology.

[37]  Kevan J. Salimian,et al.  The quantitative architecture of centromeric chromatin , 2014, eLife.

[38]  Manolis Kellis,et al.  Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments , 2013, Nucleic acids research.

[39]  Nicolas Altemose,et al.  Centromere reference models for human chromosomes X and Y satellite arrays , 2013, Genome research.

[40]  B. Ren,et al.  Mapping Human Epigenomes , 2013, Cell.

[41]  Manolis Kellis,et al.  Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence , 2013, Genome research.

[42]  H. Willard,et al.  Sequences Associated with Centromere Competency in the Human Genome , 2012, Molecular and Cellular Biology.

[43]  Gangning Liang,et al.  Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules , 2012, Genome research.

[44]  C. J. Fuller,et al.  A cell-free system for functional centromere and kinetochore assembly , 2012, Nature Protocols.

[45]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[46]  J. Bujnicki,et al.  Novel non-specific DNA adenine methyltransferases , 2011, Nucleic acids research.

[47]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[48]  Nathan C. Sheffield,et al.  Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. , 2011, Genome research.

[49]  E. Birney,et al.  High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. , 2011, Genome research.

[50]  Raymond Tellier,et al.  The Complete Sequence of a Human Parainfluenzavirus 4 Genome , 2009, Viruses.

[51]  Christopher W Carroll,et al.  Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N , 2009, Nature Cell Biology.

[52]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[53]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[54]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[55]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[56]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[57]  A. Chess,et al.  Gene Body-Specific Methylation on the Active X Chromosome , 2007, Science.

[58]  Ulrich K Laemmli,et al.  ChIC and ChEC; genomic mapping of chromatin proteins. , 2004, Molecular cell.

[59]  B. Hamkalo,et al.  Preparation of centromeric heterochromatin by restriction endonuclease digestion of mouse L929 cells , 2004, Chromosoma.

[60]  H. Willard,et al.  Sequence organization and functional annotation of human centromeres. , 2003, Cold Spring Harbor symposia on quantitative biology.

[61]  R Ohlsson,et al.  CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. , 2001, Trends in genetics : TIG.

[62]  G. Felsenfeld,et al.  Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene , 2000, Nature.

[63]  S. Henikoff,et al.  Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase , 2000, Nature Biotechnology.

[64]  J. Widom,et al.  New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. , 1998, Journal of molecular biology.

[65]  P. Neiman,et al.  CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms , 1993, Molecular and cellular biology.

[66]  Victor V Lobanenkov,et al.  A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking sequence of the chicken c-myc gene. , 1990, Oncogene.

[67]  Huntington F. Willard,et al.  Hierarchical order in chromosome-specific human alpha satellite DNA , 1987 .