Field emission microscope for a single fullerene molecule
暂无分享,去创建一个
[1] N. Moll,et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch , 2020, Nature.
[2] H. Wende,et al. Molecular Nanomagnets , 2020, SpringerBriefs in Applied Sciences and Technology.
[3] R. Temirov,et al. A standing molecule as a single-electron field emitter , 2018, Nature.
[4] J. Ferrón,et al. Growth, thermal desorption and low dose ion bombardment damage of C60 films deposited on Cu(111) , 2017 .
[5] Stefano de Gironcoli,et al. Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.
[6] Hai-yang Li,et al. Fullerene film on metal surface: Diffusion of metal atoms and interface model , 2014 .
[7] O. A. Utas,et al. Stepwise self-assembly of C60 mediated by atomic scale moiré magnifiers , 2013, Nature Communications.
[8] M. Tomita,et al. Necessary Conditions for Two-Lobe Patterns in Field Emission Microscopy , 2012 .
[9] Shangfeng Yang,et al. An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. , 2012, Journal of the American Chemical Society.
[10] Shangfeng Yang,et al. A molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage. , 2011, Nano letters.
[11] Leo Gross,et al. Recent advances in submolecular resolution with scanning probe microscopy. , 2011, Nature chemistry.
[12] C. Hafner,et al. Laser-induced field emission from a tungsten tip: Optical control of emission sites and the emission process , 2010, 1001.5375.
[13] M. Islam,et al. Enhancement of laser-induced field emission in tungsten due to a metastable d band , 2009 .
[14] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[15] R. Forbes. Gas Field Ionization Sources , 2008 .
[16] M. Araidai,et al. Ab Initio Calculation of Surface Atom Evaporation in Electron Field Emission , 2007 .
[17] N. Gall’,et al. Interaction of C60 molecules with the (100)W surface: Adsorption, initial stages of film growth, and thermal transformation of the adsorption layer , 2004 .
[18] F. C. Santos,et al. The electrostatic field of a point charge and an electrical dipole in the presence of a conducting sphere , 2004, physics/0405122.
[19] V. Davydov,et al. Electrical properties of two-dimensional fullerene matrices , 2001 .
[20] H. Ågren,et al. Electric and magnetic properties of fullerenes , 1998 .
[21] K. Tsuei,et al. Photoemission and photoabsorption study of C 60 adsorption on Cu(111) surfaces , 1997 .
[22] Yi Luo,et al. Ab initio calculations of the polarizability and the hyperpolarizability of C60 , 1997 .
[23] J. Martinek,et al. A model of fullerene conductance , 1996 .
[24] P. Lambin,et al. Polarization of C60 by the surface electric field of GeS(001) , 1995 .
[25] B. L. Maschhoff,et al. Corrected electrostatic model for dipoles adsorbed on a metal surface , 1994 .
[26] A. Caneschi,et al. Magnetic bistability in a metal-ion cluster , 1993, Nature.
[27] L. Girifalco,et al. Molecular Properties of C60 in the Gas and Solid Phases. , 1992 .
[28] R. Forbes. On charged-surface models and the origin of field adsorption , 1989 .
[29] R. Forbes. ON DIFFERENT TYPES OF DIPOLE-DIPOLE INTERACTION , 1989 .
[30] S. Tong,et al. Large-Angle Electron-Energy-Loss Spectroscopy with the Inclusion of a Surface Image Potential , 1983 .
[31] M. Sato. Gas Adsorption on Tungsten Exposed to a Mixture of Nitrogen and Oxygen , 1980 .
[32] R. Forbes. Atomic polarisability values in the SI system , 1977 .
[33] Tien T. Tsong,et al. Direct observation of the directional walk of single adatoms and the adatom polarizability , 1975 .
[34] R. Gomer,et al. Field Emission and Field Ionization , 1961 .
[35] H. B. Huntington,et al. Current-induced marker motion in gold wires☆ , 1961 .
[36] E. Müller,et al. Study of Molecular Patterns in the Field Emission Microscope , 1958 .
[37] R. H. Good,et al. Thermionic Emission, Field Emission, and the Transition Region , 1956 .
[38] D. J. Rose. On the Magnification and Resolution of the Field Emission Electron Microscope , 1956 .
[39] J. A. Becker,et al. On the Adsorption of Oxygen on Tungsten as Revealed in the Field Emission Electron Microscope , 1955 .
[40] M. Drechsler,et al. Die Bestimmung der Polarisierbarkeit von Atomen und Molekülen mit dem Feldelektronenmikroskop , 1952 .
[41] E. W. Müller. Die Sichtbarmachung einzelner Atome und Moleküle im Feldelektronenmikroskop , 1950 .
[42] C. Joachim,et al. Observations of Individual Cu-Phthalocyanine Molecules Deposited on Nano-Tips in the Field Emission Microscope , 2013 .
[43] William H. Press,et al. Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .
[44] Shuai,et al. Erratum: Electronic structure and nonlinear optical properties of the fullerenes C60 and C70: A valence-effective-Hamiltonian study , 1993, Physical Review B (Condensed Matter).
[45] L. Girifalco. Molecular properties of fullerene in the gas and solid phases , 1992 .
[46] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[47] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[48] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[49] Russell D. Young,et al. Theoretical Total-Energy Distribution of Field-Emitted Electrons , 1959 .