Field emission microscope for a single fullerene molecule

[1]  N. Moll,et al.  Sub-cycle atomic-scale forces coherently control a single-molecule switch , 2020, Nature.

[2]  H. Wende,et al.  Molecular Nanomagnets , 2020, SpringerBriefs in Applied Sciences and Technology.

[3]  R. Temirov,et al.  A standing molecule as a single-electron field emitter , 2018, Nature.

[4]  J. Ferrón,et al.  Growth, thermal desorption and low dose ion bombardment damage of C60 films deposited on Cu(111) , 2017 .

[5]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Hai-yang Li,et al.  Fullerene film on metal surface: Diffusion of metal atoms and interface model , 2014 .

[7]  O. A. Utas,et al.  Stepwise self-assembly of C60 mediated by atomic scale moiré magnifiers , 2013, Nature Communications.

[8]  M. Tomita,et al.  Necessary Conditions for Two-Lobe Patterns in Field Emission Microscopy , 2012 .

[9]  Shangfeng Yang,et al.  An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. , 2012, Journal of the American Chemical Society.

[10]  Shangfeng Yang,et al.  A molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage. , 2011, Nano letters.

[11]  Leo Gross,et al.  Recent advances in submolecular resolution with scanning probe microscopy. , 2011, Nature chemistry.

[12]  C. Hafner,et al.  Laser-induced field emission from a tungsten tip: Optical control of emission sites and the emission process , 2010, 1001.5375.

[13]  M. Islam,et al.  Enhancement of laser-induced field emission in tungsten due to a metastable d band , 2009 .

[14]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  R. Forbes Gas Field Ionization Sources , 2008 .

[16]  M. Araidai,et al.  Ab Initio Calculation of Surface Atom Evaporation in Electron Field Emission , 2007 .

[17]  N. Gall’,et al.  Interaction of C60 molecules with the (100)W surface: Adsorption, initial stages of film growth, and thermal transformation of the adsorption layer , 2004 .

[18]  F. C. Santos,et al.  The electrostatic field of a point charge and an electrical dipole in the presence of a conducting sphere , 2004, physics/0405122.

[19]  V. Davydov,et al.  Electrical properties of two-dimensional fullerene matrices , 2001 .

[20]  H. Ågren,et al.  Electric and magnetic properties of fullerenes , 1998 .

[21]  K. Tsuei,et al.  Photoemission and photoabsorption study of C 60 adsorption on Cu(111) surfaces , 1997 .

[22]  Yi Luo,et al.  Ab initio calculations of the polarizability and the hyperpolarizability of C60 , 1997 .

[23]  J. Martinek,et al.  A model of fullerene conductance , 1996 .

[24]  P. Lambin,et al.  Polarization of C60 by the surface electric field of GeS(001) , 1995 .

[25]  B. L. Maschhoff,et al.  Corrected electrostatic model for dipoles adsorbed on a metal surface , 1994 .

[26]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[27]  L. Girifalco,et al.  Molecular Properties of C60 in the Gas and Solid Phases. , 1992 .

[28]  R. Forbes On charged-surface models and the origin of field adsorption , 1989 .

[29]  R. Forbes ON DIFFERENT TYPES OF DIPOLE-DIPOLE INTERACTION , 1989 .

[30]  S. Tong,et al.  Large-Angle Electron-Energy-Loss Spectroscopy with the Inclusion of a Surface Image Potential , 1983 .

[31]  M. Sato Gas Adsorption on Tungsten Exposed to a Mixture of Nitrogen and Oxygen , 1980 .

[32]  R. Forbes Atomic polarisability values in the SI system , 1977 .

[33]  Tien T. Tsong,et al.  Direct observation of the directional walk of single adatoms and the adatom polarizability , 1975 .

[34]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[35]  H. B. Huntington,et al.  Current-induced marker motion in gold wires☆ , 1961 .

[36]  E. Müller,et al.  Study of Molecular Patterns in the Field Emission Microscope , 1958 .

[37]  R. H. Good,et al.  Thermionic Emission, Field Emission, and the Transition Region , 1956 .

[38]  D. J. Rose On the Magnification and Resolution of the Field Emission Electron Microscope , 1956 .

[39]  J. A. Becker,et al.  On the Adsorption of Oxygen on Tungsten as Revealed in the Field Emission Electron Microscope , 1955 .

[40]  M. Drechsler,et al.  Die Bestimmung der Polarisierbarkeit von Atomen und Molekülen mit dem Feldelektronenmikroskop , 1952 .

[41]  E. W. Müller Die Sichtbarmachung einzelner Atome und Moleküle im Feldelektronenmikroskop , 1950 .

[42]  C. Joachim,et al.  Observations of Individual Cu-Phthalocyanine Molecules Deposited on Nano-Tips in the Field Emission Microscope , 2013 .

[43]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[44]  Shuai,et al.  Erratum: Electronic structure and nonlinear optical properties of the fullerenes C60 and C70: A valence-effective-Hamiltonian study , 1993, Physical Review B (Condensed Matter).

[45]  L. Girifalco Molecular properties of fullerene in the gas and solid phases , 1992 .

[46]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[47]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[48]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[49]  Russell D. Young,et al.  Theoretical Total-Energy Distribution of Field-Emitted Electrons , 1959 .