The gamma-uniform distribution and its applications

Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Renyi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.

[1]  Gauss M. Cordeiro,et al.  The beta modified Weibull distribution , 2010, Lifetime data analysis.

[2]  Coskun Kus,et al.  A new lifetime distribution , 2007, Comput. Stat. Data Anal..

[3]  F. Famoye,et al.  The beta-Pareto distribution , 2008 .

[4]  L. J. Bain,et al.  Introduction to Probability and Mathematical Statistics , 1987 .

[5]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[6]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[7]  Gauss M. Cordeiro,et al.  The beta-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling , 2011, Comput. Stat. Data Anal..

[8]  M. C. Jones Families of distributions arising from distributions of order statistics , 2004 .

[9]  M Zelen,et al.  Estimation of exponential survival probabilities with concomitant information. , 1965, Biometrics.

[10]  Gauss M. Cordeiro,et al.  The beta Laplace distribution , 2011 .

[11]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[12]  Gauss M. Cordeiro,et al.  The beta generalized half-normal distribution , 2010, Comput. Stat. Data Anal..

[13]  Malwane M. A. Ananda,et al.  A Generalization of the Half-Normal Distribution with Applications to Lifetime Data , 2008 .

[14]  S. Nadarajah,et al.  Expressions for Rényi and Shannon entropies for multivariate distributions , 2005 .

[15]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[16]  Gauss M. Cordeiro,et al.  The beta Burr XII distribution with application to lifetime data , 2011, Comput. Stat. Data Anal..

[17]  S. Nadarajah,et al.  The beta Gumbel distribution , 2004 .

[18]  Eisa Mahmoudi,et al.  The beta generalized Pareto distribution with application to lifetime data , 2011, Math. Comput. Simul..