Towards Integrating Evolution, Metabolism, and Climate Change Studies of Marine Ecosystems.

[1]  S. Henson,et al.  The Sensitivity of Subsurface Microbes to Ocean Warming Accentuates Future Declines in Particulate Carbon Export , 2019, Front. Ecol. Evol..

[2]  E. Galbraith,et al.  Metabolic impacts of climate change on marine ecosystems: Implications for fish communities and fisheries , 2018, Global Ecology and Biogeography.

[3]  P. Pearson,et al.  Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change? , 2018, Global and Planetary Change.

[4]  Elvire Bestion,et al.  Changes in temperature alter the relationship between biodiversity and ecosystem functioning , 2018, Proceedings of the National Academy of Sciences.

[5]  Y. Yamanaka,et al.  Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming , 2018, Proceedings of the National Academy of Sciences.

[6]  D. Debroas,et al.  A strong link between marine microbial community composition and function challenges the idea of functional redundancy , 2018, The ISME Journal.

[7]  Joseph D. Napier,et al.  Invoking adaptation to decipher the genetic legacy of past climate change. , 2018, Ecology.

[8]  B. Canbäck,et al.  Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes , 2018, Environmental microbiology.

[9]  Diego R. Barneche,et al.  The energetics of fish growth and how it constrains food-web trophic structure. , 2018, Ecology letters.

[10]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[11]  Susana Martínez Arbas,et al.  Using metabolic networks to resolve ecological properties of microbiomes , 2018 .

[12]  B. Satinsky,et al.  Ocean biogeochemistry modeled with emergent trait-based genomics , 2017, Science.

[13]  Z. Johnson,et al.  Annual community patterns are driven by seasonal switching between closely related marine bacteria , 2017, The ISME Journal.

[14]  Simon Jennings,et al.  Metabolic compensation constrains the temperature dependence of gross primary production , 2017, Ecology letters.

[15]  B. Jørgensen,et al.  Microbial turnover times in the deep seabed studied by amino acid racemization modelling , 2017, Scientific Reports.

[16]  D. Lindenmayer,et al.  Niche Contractions in Declining Species: Mechanisms and Consequences. , 2017, Trends in ecology & evolution.

[17]  E. Graham,et al.  Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism , 2016, Front. Microbiol..

[18]  M. Doebeli,et al.  Decoupling function and taxonomy in the global ocean microbiome , 2016, Science.

[19]  P. Dorrestein,et al.  Deciphering ocean carbon in a changing world , 2016, Proceedings of the National Academy of Sciences.

[20]  A. Ridgwell,et al.  The influence of the biological pump on ocean chemistry: implications for long‐term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems , 2016, Geobiology.

[21]  Davey L. Jones,et al.  Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes? , 2016, Front. Microbiol..

[22]  A. Buckling,et al.  Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton , 2015, Ecology letters.

[23]  S. Allison,et al.  Microbial response to simulated global change is phylogenetically conserved and linked with functional potential , 2015, The ISME Journal.

[24]  I. Nagelkerken,et al.  Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions , 2015, Proceedings of the National Academy of Sciences.

[25]  Renee A. Catullo,et al.  Extending spatial modelling of climate change responses beyond the realized niche: estimating, and accommodating, physiological limits and adaptive evolution , 2015 .

[26]  F. Joos,et al.  Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios , 2015, Science.

[27]  Curtis Deutsch,et al.  Climate change tightens a metabolic constraint on marine habitats , 2015, Science.

[28]  R. Gast,et al.  Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. , 2015, Environmental microbiology.

[29]  Andrew J Irwin,et al.  Phytoplankton adapt to changing ocean environments , 2015, Proceedings of the National Academy of Sciences.

[30]  Francisco P Chavez,et al.  Microbial community transcriptional networks are conserved in three domains at ocean basin scales , 2015, Proceedings of the National Academy of Sciences.

[31]  C. Webb,et al.  Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories , 2015, 1502.06629.

[32]  Neil D. Fredrick,et al.  Biogeographic patterns in ocean microbes emerge in a neutral agent-based model , 2014, Science.

[33]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[34]  Sinéad Collins,et al.  Evolutionary potential of marine phytoplankton under ocean acidification , 2013, Evolutionary applications.

[35]  M. Lascoux,et al.  Ecological genomics of local adaptation , 2013, Nature Reviews Genetics.

[36]  Carrie V. Kappel,et al.  Global imprint of climate change on marine life , 2013 .

[37]  Jasper A. Vrugt,et al.  Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus , 2013, Proceedings of the National Academy of Sciences.

[38]  F. Tuya,et al.  An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot , 2013 .

[39]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[40]  Elena Litchman,et al.  A Global Pattern of Thermal Adaptation in Marine Phytoplankton , 2012, Science.

[41]  T. Mitchell-Olds,et al.  Adaptive evolution: evaluating empirical support for theoretical predictions , 2012, Nature Reviews Genetics.

[42]  T. Mitchell-Olds,et al.  Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change , 2012, Proceedings of the Royal Society B: Biological Sciences.

[43]  T. Berman,et al.  Prokaryotic community structure and respiration during long-term incubations , 2012, MicrobiologyOpen.

[44]  U. Riebesell,et al.  Adaptive evolution of a key phytoplankton species to ocean acidification , 2012 .

[45]  Alex A. Pollen,et al.  The genomic basis of adaptive evolution in threespine sticklebacks , 2012, Nature.

[46]  Hongbin Liu,et al.  Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? , 2012 .

[47]  A. Timmermann,et al.  Enhanced warming over the global subtropical western boundary currents , 2012 .

[48]  M. Visbeck,et al.  Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes , 2012 .

[49]  M. Gehlen,et al.  The response of marine carbon and nutrient cycles to ocean acidification: Large uncertainties related to phytoplankton physiological assumptions , 2011 .

[50]  Melinda D. Smith The ecological role of climate extremes: current understanding and future prospects , 2011 .

[51]  Mark Vellend,et al.  Conceptual Synthesis in Community Ecology , 2010, The Quarterly Review of Biology.

[52]  R. Holt Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives , 2009, Proceedings of the National Academy of Sciences.

[53]  Robert K. Colwell,et al.  Hutchinson's duality: The once and future niche , 2009, Proceedings of the National Academy of Sciences.

[54]  Patrick J. McIntyre,et al.  Evolution and Ecology of Species Range Limits , 2009 .

[55]  J. Gasol,et al.  Microbial oceanography of the dark ocean's pelagic realm , 2009 .

[56]  Bradley S. Hughes,et al.  Microbial experimental evolution. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[57]  Antoine Guisan,et al.  Niche dynamics in space and time. , 2008, Trends in ecology & evolution.

[58]  S. Yeaman,et al.  Adaptation, migration or extirpation: climate change outcomes for tree populations , 2008, Evolutionary applications.

[59]  D. Schluter,et al.  Adaptation from standing genetic variation. , 2008, Trends in ecology & evolution.

[60]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[61]  D. Goldstein,et al.  Which evolutionary processes influence natural genetic variation for phenotypic traits? , 2007, Nature Reviews Genetics.

[62]  P Taberlet,et al.  A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation , 2007, Molecular ecology.

[63]  D. Reznick,et al.  Evolution on ecological time‐scales , 2007 .

[64]  Michel Loreau,et al.  Eco‐evolutionary dynamics of communities and ecosystems , 2007 .

[65]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[66]  Susan M. Huse,et al.  Microbial diversity in the deep sea and the underexplored “rare biosphere” , 2006, Proceedings of the National Academy of Sciences.

[67]  Xabier Irigoien,et al.  Scaling the metabolic balance of the oceans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Richard Shine,et al.  Invasion and the evolution of speed in toads , 2006, Nature.

[69]  S. Ellner,et al.  Rapid evolution and the convergence of ecological and evolutionary time , 2005 .

[70]  D. Schwarz,et al.  Host shift to an invasive plant triggers rapid animal hybrid speciation , 2005, Nature.

[71]  R. Petit,et al.  Conserving biodiversity under climate change: the rear edge matters. , 2005, Ecology letters.

[72]  James H. Brown,et al.  Linking the global carbon cycle to individual metabolism , 2005 .

[73]  L. Kruuk,et al.  Evolution driven by differential dispersal within a wild bird population , 2005, Nature.

[74]  Graham Bell,et al.  Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga , 2004, Nature.

[75]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[76]  M. Heimann,et al.  Climate‐induced oceanic oxygen fluxes: Implications for the contemporary carbon budget , 2002 .

[77]  Julie R. Etterson,et al.  Constraint to Adaptive Evolution in Response to Global Warming , 2001, Science.

[78]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[79]  T. Quinn,et al.  Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. , 2000, Science.

[80]  J. Feder,et al.  Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella , 2000, Nature.

[81]  H. Pulliam On the relationship between niche and distribution , 2000 .

[82]  M. Taper,et al.  Interspecific Competition, Environmental Gradients, Gene Flow, and the Coevolution of Species' Borders , 2000, The American Naturalist.

[83]  J. N. Thompson,et al.  Rapid evolution as an ecological process. , 1998, Trends in ecology & evolution.

[84]  Mark Kirkpatrick,et al.  GENETIC MODELS OF ADAPTATION AND GENE FLOW IN PERIPHERAL POPULATIONS , 1997, Evolution; international journal of organic evolution.

[85]  A. F. Bennett,et al.  Animals and Temperature: List of contributors , 1996 .

[86]  M. Lynch,et al.  EVOLUTION AND EXTINCTION IN A CHANGING ENVIRONMENT: A QUANTITATIVE‐GENETIC ANALYSIS , 1995, Evolution; international journal of organic evolution.

[87]  M. Lynch Evolution and extinction in response to environ mental change. , 1993 .

[88]  G. Evelynhutchinson,et al.  Population studies: Animal ecology and demography , 1991 .