Extracellular Fe(III) reductase structure reveals a modular organization enabling S-layer insertion and electron transfer to insoluble substrates.

[1]  O. Gomaa,et al.  Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications , 2022, World Journal of Microbiology and Biotechnology.

[2]  C. Andreini,et al.  A New Paradigm of Multiheme Cytochrome Evolution by Grafting and Pruning Protein Modules , 2022, bioRxiv.

[3]  T. Ueki Cytochromes in Extracellular Electron Transfer in Geobacter , 2021, Applied and Environmental Microbiology.

[4]  Bruno M. Fonseca,et al.  Crossing the Wall: Characterization of the Multiheme Cytochromes Involved in the Extracellular Electron Transfer Pathway of Thermincola ferriacetica , 2021, Microorganisms.

[5]  J. Lloyd,et al.  Novel Extracellular Electron Transfer Channels in a Gram-Positive Thermophilic Bacterium , 2021, Frontiers in Microbiology.

[6]  Yichao Wu,et al.  Outer Membrane c-Type Cytochromes OmcA and MtrC Play Distinct Roles in Enhancing the Attachment of Shewanella oneidensis MR-1 Cells to Goethite , 2020, Applied and Environmental Microbiology.

[7]  Yi Wang,et al.  Scalable molecular dynamics on CPU and GPU architectures with NAMD. , 2020, The Journal of chemical physics.

[8]  D. Richardson,et al.  The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire , 2020, Cell.

[9]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[10]  O. Einsle,et al.  How Thermophilic Gram-Positive Organisms Perform Extracellular Electron Transfer: Characterization of the Cell Surface Terminal Reductase OcwA , 2019, mBio.

[11]  L. Gorton,et al.  Extracellular electron transfer features of Gram-positive bacteria. , 2019, Analytica chimica acta.

[12]  B. Lusk Thermophiles; or, the Modern Prometheus: The Importance of Extreme Microorganisms for Understanding and Applying Extracellular Electron Transfer , 2019, Front. Microbiol..

[13]  Caroline M. Ajo-Franklin,et al.  A flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria , 2018, Nature.

[14]  P. Messner,et al.  Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei , 2018, Nature Communications.

[15]  R. Louro,et al.  Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. , 2018, Bioresource technology.

[16]  P. Howell,et al.  Molecular Basis for the Attachment of S-Layer Proteins to the Cell Wall of Bacillus anthracis. , 2018, Biochemistry.

[17]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[18]  D. Turk,et al.  The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of the Clostridium difficile Cell Wall Proteins Cwp8 and Cwp6. , 2017, Structure.

[19]  C. Hoffman,et al.  Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens , 2016, The ISME Journal.

[20]  Liisa Holm,et al.  Dali server update , 2016, Nucleic Acids Res..

[21]  U. Sleytr,et al.  Relevance of glycosylation of S-layer proteins for cell surface properties , 2015, Acta biomaterialia.

[22]  Jochen Blumberger,et al.  Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities , 2015, Journal of The Royal Society Interface.

[23]  D. Richardson,et al.  The X‐ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe–mineral interface , 2014, FEBS letters.

[24]  D. Pum,et al.  S‐layers: principles and applications , 2014, FEMS microbiology reviews.

[25]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[26]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[27]  D. Richardson,et al.  The crystal structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined binding site for soluble iron chelates. , 2012, Structure.

[28]  D. Richardson,et al.  Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration. , 2012, Biochemical Society transactions.

[29]  J. Lloyd,et al.  Fe(III) Oxide Reduction by a Gram-positive Thermophile: Physiological Mechanisms for Dissimilatory Reduction of Poorly Crystalline Fe(III) Oxide by a Thermophilic Gram-positive Bacterium Carboxydothermus ferrireducens , 2012 .

[30]  Manfred Auer,et al.  Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria , 2012, Proceedings of the National Academy of Sciences.

[31]  J. C. Thrash,et al.  Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell , 2011, Applied and Environmental Microbiology.

[32]  Alexander D. MacKerell,et al.  Impact of 2′‐hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all‐atom additive force field for RNA , 2011, J. Comput. Chem..

[33]  John M. Zachara,et al.  Structure of a bacterial cell surface decaheme electron conduit , 2011, Proceedings of the National Academy of Sciences.

[34]  T. Arakawa,et al.  Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. , 2011, Biochimica et biophysica acta.

[35]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[36]  K. Zarschler,et al.  Protein tyrosine O-glycosylation--a rather unexplored prokaryotic glycosylation system. , 2010, Glycobiology.

[37]  D. Lovley,et al.  Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens , 2010, Applied and Environmental Microbiology.

[38]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[39]  T. Straatsma,et al.  In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype. , 2008, Environmental science & technology.

[40]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[41]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[42]  F. Robb,et al.  Characterization of membrane-bound Fe(III)-EDTA reductase activities of the thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens , 2007, Microbiology.

[43]  J. Wiegel,et al.  Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus. , 2006, International journal of systematic and evolutionary microbiology.

[44]  T. Nishio,et al.  A novel microperoxidase activity: methyl viologen-linked nitrite reducing activity of microperoxidase. , 2004, Biochemical and biophysical research communications.

[45]  J. L. Smith,et al.  Tryptophan-heme pi-electrostatic interactions in cytochrome f of oxygenic photosynthesis. , 2000, Biochemistry.

[46]  P. Dobbin,et al.  Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. , 1999, The Biochemical journal.

[47]  M. Dreier,et al.  Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. , 1997, International journal of systematic bacteriology.

[48]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[49]  J. L. Smith,et al.  Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. , 1994, Structure.

[50]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[51]  G. Moore,et al.  N.m.r., e.p.r. and magnetic-c.d. studies of cytochrome f. Identity of the haem axial ligands. , 1988, The Biochemical journal.

[52]  G. Palmer The electron paramagnetic resonance of metalloproteins. , 1985, Biochemical Society transactions.

[53]  R. Becker,et al.  Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. , 1984, Analytical biochemistry.

[54]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[55]  D. Richardson,et al.  Mechanisms of Bacterial Extracellular Electron Exchange. , 2016, Advances in microbial physiology.

[56]  U. Sleytr,et al.  Bacterial surface layer glycoproteins and “non-classical” secondary cell wall polymers , 2010 .

[57]  Hazen,et al.  Review Paper. Mineral evolution , 2008 .

[58]  Karen N. Allen,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[59]  R. Read,et al.  Electronic Reprint Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard , 2022 .