Bacterial FHA domains: neglected players in the phospho-threonine signalling game?

[1]  M. Pallen The ESAT-6/WXG100 superfamily -- and a new Gram-positive secretion system? , 2002, Trends in microbiology.

[2]  Daniel Durocher,et al.  The FHA domain , 2002, FEBS letters.

[3]  Rachna Chaba,et al.  Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. , 2002, European journal of biochemistry.

[4]  Y. Av‐Gay,et al.  A protein kinase inhibitor as an antimycobacterial agent. , 2001, FEMS microbiology letters.

[5]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[6]  W C Shakespeare,et al.  SH2 domain inhibition: a problem solved? , 2001, Current opinion in chemical biology.

[7]  A. Ullrich,et al.  Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. , 2001, Microbiology.

[8]  M. de Pedro,et al.  Constitutive Septal Murein Synthesis inEscherichia coli with Impaired Activity of the Morphogenetic Proteins RodA and Penicillin-Binding Protein 2 , 2001, Journal of bacteriology.

[9]  M. Yaffe,et al.  Phosphoserine/threonine-binding domains. , 2001, Current opinion in cell biology.

[10]  M. Yaffe,et al.  PhosphoSerine/threonine binding domains: you can't pSERious? , 2001, Structure.

[11]  Y. Nakamura,et al.  Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[12]  D. Durocher,et al.  The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. , 2000, Molecular cell.

[13]  Y. Nakamura,et al.  Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. , 2000, Nucleic acids research.

[14]  K. Chaudhuri,et al.  Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection. , 2000, FEMS microbiology letters.

[15]  Y Av-Gay,et al.  The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. , 2000, Trends in microbiology.

[16]  J. Musser,et al.  Molecular Genetic Analysis of Nucleotide Polymorphisms Associated with Ethambutol Resistance in Human Isolates ofMycobacterium tuberculosis , 2000, Antimicrobial Agents and Chemotherapy.

[17]  C. Bakal,et al.  No longer an exclusive club: eukaryotic signalling domains in bacteria. , 2000, Trends in cell biology.

[18]  S. Inouye,et al.  A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. , 2000, Microbial & comparative genomics.

[19]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[20]  M. Tsai,et al.  Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. , 1999, Journal of molecular biology.

[21]  D. Zusman,et al.  Sporulation timing in Myxococcus xanthus is controlled by the espAB locus , 1999, Molecular microbiology.

[22]  G. Blatch,et al.  The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  V. Kapatral,et al.  Characterization of a Hank’s Type Serine/Threonine Kinase and Serine/Threonine Phosphoprotein Phosphatase inPseudomonas aeruginosa , 1999, Journal of bacteriology.

[24]  Sarwat Jamil,et al.  Expression and Characterization of the Mycobacterium tuberculosis Serine/Threonine Protein Kinase PknB , 1999, Infection and Immunity.

[25]  G. Hatfull,et al.  Exponential-Phase Glycogen Recycling Is Essential for Growth of Mycobacterium smegmatis , 1999, Journal of bacteriology.

[26]  S. Lory,et al.  Functional Characterization of a Serine/Threonine Protein Kinase of Pseudomonas aeruginosa , 1999, Infection and Immunity.

[27]  D. Durocher,et al.  The FHA domain is a modular phosphopeptide recognition motif. , 1999, Molecular cell.

[28]  J. Pfeifer,et al.  Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease , 1999, Molecular microbiology.

[29]  C. Ponting,et al.  Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. , 1999, Journal of molecular biology.

[30]  S. Inouye,et al.  Inhibition of Development of Myxococcus xanthus by Eukaryotic Protein Kinase Inhibitors , 1998, Journal of bacteriology.

[31]  A. Mushegian,et al.  A Novel Serine/Threonine Protein Kinase Homologue of Pseudomonas aeruginosa Is Specifically Inducible within the Host Infection Site and Is Required for Full Virulence in Neutropenic Mice , 1998, Journal of bacteriology.

[32]  E. Koonin,et al.  Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. , 1998, Genome research.

[33]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[34]  H. Shuman,et al.  The Legionella pneumophila icmGCDJBFGenes Are Required for Killing of Human Macrophages , 1998, Infection and Immunity.

[35]  H. Shuman,et al.  Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Chothia,et al.  Intermediate sequences increase the detection of homology between sequences. , 1997, Journal of molecular biology.

[37]  H. Spaink,et al.  A Rhizobium leguminosarum biovar trifolii locus not localized on the sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group. , 1997, Molecular plant-microbe interactions : MPMI.

[38]  G. Besra,et al.  The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P Bucher,et al.  The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. , 1995, Trends in biochemical sciences.

[40]  G. Plano,et al.  Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis , 1995, Journal of bacteriology.

[41]  S. Fields,et al.  Protein-protein interactions: methods for detection and analysis , 1995, Microbiological reviews.

[42]  H. Ogawara,et al.  Cloning, sequencing and expression of serine/threonine kinase-encoding genes from Streptomyces coelicolor A3(2). , 1995, Gene.