Superconvergence analysis of a new linearized MFEM for nonlinear Schrödinger equation

ABSTRACT This paper concerns with the superconvergence analysis of a new mixed finite element method (MFEM) with element pair () for time-dependent nonlinear Schrödinger equation(NLSE). Based on the special characters of this element pair and the superclose estimate between the interpolation and projection operators in -norm together with a simple interpolation postprocessing approach, the superclose and global superconvergence results of the original and the flux variable are deduced for a linearized backward Euler fully-discrete scheme. Finally, some numerical results are provided to confirm the theoretical analysis.

[1]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[2]  Zhi-Zhong Sun,et al.  Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..

[3]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[4]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[5]  Wang Ming-Liang,et al.  The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrödinger equation , 2009 .

[6]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[7]  Xin Liao,et al.  Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation , 2016, Appl. Math. Comput..

[8]  A. G. Bratsos A modified numerical scheme for the cubic Schrödinger equation , 2011 .

[9]  Huiqun Zhang,et al.  Extended Jacobi elliptic function expansion method and its applications , 2007 .

[10]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[11]  Waixiang Cao,et al.  Superconvergence of Local Discontinuous Galerkin Method for One-Dimensional Linear Schrödinger Equations , 2017, Journal of Scientific Computing.

[12]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[13]  Zhangxin Chen,et al.  Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation , 2016, Adv. Comput. Math..

[14]  Ming-Liang Wang,et al.  The (G'/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrödinger equation , 2009, Appl. Math. Comput..

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[17]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[18]  Liquan Mei,et al.  Implicit-explicit multistep methods for general two-dimensional nonlinear Schrödinger equations , 2016 .

[19]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[20]  Abdelhalim Ebaid,et al.  New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity , 2011, J. Comput. Appl. Math..

[21]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[22]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.

[23]  Zhi-Zhong Sun,et al.  On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..

[24]  Dongyang Shi,et al.  A nonconforming quadrilateral finite element approximation to nonlinear schrödinger equation , 2017 .

[25]  Pan Chen,et al.  Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations , 2017, J. Sci. Comput..

[26]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[27]  Sergey Leble,et al.  On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..

[28]  Zhangxin Chen,et al.  Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation , 2018, J. Comput. Appl. Math..

[29]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[30]  Yongsheng Li,et al.  ON INITIAL BOUNDARY VALUE PROBLEMS FOR NONLINEAR SCHRÖDINGER EQUATIONS , 1996 .

[31]  Dongyang Shi,et al.  A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes , 2016, Appl. Math. Lett..

[32]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[33]  G. Burton Sobolev Spaces , 2013 .

[34]  Lin Yi,et al.  Exact solutions of a generalized nonlinear Schrödinger equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.