Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems

In the paper we study interacting particle approximations of discrete time and measure-valued dynamical systems. These systems have arisen in such diverse scientic disciplines as physics and signal processing. We give conditions for the so-called particle density proles to converge to the desired distribution when the number of particles is growing. The strength of our approach is that is applicable to a large class of measure-valued dynamical systems arising in engineering and particularly in nonlinear ltering problems. Our second objective is to use these results to solve numerically the nonlinear ltering equation. Examples arising in uid mechanics are also given.

[1]  J. Doob Stochastic processes , 1953 .

[2]  R. L. Stratonovich CONDITIONAL MARKOV PROCESSES , 1960 .

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[5]  A. Shiryaev Addendum: On Stochastic Equations in the Theory of Conditional Markov Processes , 1967 .

[6]  Shinzo Watanabe,et al.  A limit theorem of branching processes and continuous state branching processes , 1968 .

[7]  G. Kallianpur,et al.  Stochastic Differential Equations Occurring in the Estimation of Continuous Parameter Stochastic Processes , 1969 .

[8]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[9]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[10]  H. Kunita Asymptotic behavior of the nonlinear filtering errors of Markov processes , 1971 .

[11]  D. Dawson Stochastic evolution equations and related measure processes , 1975 .

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[14]  D. Ocone Topics in Nonlinear Filtering Theory. , 1980 .

[15]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[16]  D. Pollard Convergence of stochastic processes , 1984 .

[17]  A. Sznitman Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated , 1984 .

[18]  Hiroshi Tanaka,et al.  Central limit theorem for a system of Markovian particles with mean field interactions , 1985 .

[19]  T. Liggett Interacting Particle Systems , 1985 .

[20]  Sylvie Méléard,et al.  A propagation of chaos result for a system of particles with moderate interaction , 1987 .

[21]  李幼升,et al.  Ph , 1989 .

[22]  D. F. Liang,et al.  Development of a Marine Integrated Navigation System , 1989 .

[23]  L. Stettner On invariant measures of filtering processes , 1989 .

[24]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[25]  A. Sznitman Topics in propagation of chaos , 1991 .

[26]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[27]  P. Del Moral,et al.  Traitement non-linéaire du signal par réseau particulaire application radar , 1993 .

[28]  R. Cerf Une théorie asymptotique des algorithmes génétiques , 1994 .

[29]  Himilcon Carvalho Filtrage optimal non-linéaire du signal GPS NAVSTAR en recalage de centrales de navigation , 1995 .

[30]  P. Moral Nonlinear Filtering Using Random Particles , 1996 .

[31]  Dan Crisan,et al.  Problem of nonlinear filtering , 1996 .

[32]  P. Moral Nonlinear filtering : Interacting particle resolution , 1997 .

[33]  H. Carvalho,et al.  Optimal nonlinear filtering in GPS/INS integration , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[34]  D. Crisan,et al.  Nonlinear filtering and measure-valued processes , 1997 .

[35]  D. Crisan,et al.  A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .

[36]  Dan Crisan,et al.  Convergence of a Branching Particle Method to the Solution of the Zakai Equation , 1998, SIAM J. Appl. Math..

[37]  P. Moral,et al.  On the Convergence and the Applications of the Generalized Simulated Annealing , 1999 .