Wireless slips and falls prediction system

Accidental slips and falls due to decreased strength and stability are a concern for the elderly. A method to detect and ideally predict these falls can reduce their occurrence and allow these individuals to regain a degree of independence. This paper presents the design and assessment of a wireless, wearable device that continuously samples accelerometer and gyroscope data with a goal to detect and predict falls. Lyapunov-based analyses of these time series data indicate that wearer instability can be detected and predicted in real time, implying the ability to predict impending incidents.