Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques

Abstract We investigate solution techniques for numerical constraint-satisfaction problems and validated numerical set integration methods for computing reachable sets of nonlinear hybrid dynamical systems in the presence of uncertainty. To use interval simulation tools with higher-dimensional hybrid systems, while assuming large domains for either initial continuous state or model parameter vectors, we need to solve the problem of flow/sets intersection in an effective and reliable way. The main idea developed in this paper is first to derive an analytical expression for the boundaries of continuous flows, using interval Taylor methods and techniques for controlling the wrapping effect. Then, the event detection and localization problems underlying flow/sets intersection are expressed as numerical constraint-satisfaction problems, which are solved using global search methods based on branch-and-prune algorithms, interval analysis and consistency techniques. The method is illustrated with hybrid systems with uncertain nonlinear continuous dynamics and nonlinear invariants and guards.

[1]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[2]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[3]  Stefan Ratschan,et al.  Safety verification of hybrid systems by constraint propagation-based abstraction refinement , 2007, TECS.

[4]  Thomas A. Henzinger,et al.  Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods , 2000, HSCC.

[5]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[6]  N.S. Nedialkov,et al.  Rigorous simulation of hybrid dynamic systems with symbolic and interval methods , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[7]  Hervé Guéguen,et al.  Hybrid abstractions of affine systems , 2006 .

[8]  Calin Belta,et al.  Reachability analysis of multi-affine systems , 2006, HSCC.

[9]  Olaf Stursberg,et al.  Efficient Representation and Computation of Reachable Sets for Hybrid Systems , 2003, HSCC.

[10]  Stavros Tripakis,et al.  Verification of Hybrid Systems with Linear Differential Inclusions Using Ellipsoidal Approximations , 2000, HSCC.

[11]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[12]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[13]  Vijay Kumar,et al.  Accurate Event Detection for Simulating Hybrid Systems , 2001, HSCC.

[14]  Martin Berz,et al.  Computation and Application of Taylor Polynomials with Interval Remainder Bounds , 1998, Reliab. Comput..

[15]  Thomas A. Henzinger,et al.  Automatic Rectangular Refinement of Affine Hybrid Systems , 2005, FORMATS.

[16]  Hélène Collavizza,et al.  Comparing Partial Consistencies , 1998, SCAN.

[17]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[18]  Martin Fränzle,et al.  SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems , 2008, ATVA.

[19]  Frédéric Benhamou,et al.  Continuous and Interval Constraints , 2006, Handbook of Constraint Programming.

[20]  P. Varaiya,et al.  Ellipsoidal Techniques for Hybrid Dynamics: the Reachability Problem , 2005 .

[21]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[22]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[23]  Nedialko S. Nedialkov,et al.  Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint propagation techniques , 2009, ADHS.

[24]  Calin Belta,et al.  Model Checking Genetic Regulatory Networks with Parameter Uncertainty , 2007, HSCC.

[25]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[26]  Paul I. Barton,et al.  State event location in differential-algebraic models , 1996, TOMC.

[27]  Nacim Meslem,et al.  Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization , 2008, HSCC.

[28]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[29]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[30]  Antoine Girard,et al.  Hybridization methods for the analysis of nonlinear systems , 2007, Acta Informatica.

[31]  Janan Zaytoon,et al.  On the formal verification of hybrid systems , 2004 .

[32]  George F. Corliss,et al.  Validating an A Priori Enclosure Using High-Order Taylor Series , 2007 .

[33]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[34]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[35]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[36]  Olivier Bournez,et al.  Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems , 2000, HSCC.