Backpropagation through Time Algorithm for Training Recurrent Neural Networks using Variable Length Instances
暂无分享,去创建一个
Isis Bonet | Isel Grau | María M. García | Gonzalo Nápoles | G. Nápoles | I. Grau | Isis Bonet | M. M. García | Isel Grau | Gonzalo Nápoles
[1] Paolo Frasconi,et al. New Machine Learning Methods for the Prediction of Protein Topologies , 2002 .
[2] M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .
[3] Claudio Javier Tablada,et al. Redes Neuronales Artificiales , 2009 .
[4] Gonzalo Nápoles,et al. Fuzzy Cognitive Maps for Modelling, Predicting and Interpreting HIV Drug Resistance , 2012, IBERAMIA.
[5] Amir F. Atiya,et al. New results on recurrent network training: unifying the algorithms and accelerating convergence , 2000, IEEE Trans. Neural Networks Learn. Syst..
[6] María Matilde García Lorenzo,et al. Redes neuronales recurrentes para el análisis de secuencias , 2007 .
[7] P J Webros. BACKPROPAGATION THROUGH TIME: WHAT IT DOES AND HOW TO DO IT , 1990 .
[8] Gonzalo Nápoles,et al. Modelling, Aggregation and Simulation of a Dynamic Biological System through Fuzzy Cognitive Maps , 2012, MICAI.
[9] Thomas Lengauer,et al. Diversity and complexity of HIV-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[10] M. Friedman. A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .
[11] Sorin Draghici,et al. Predicting HIV drug resistance with neural networks , 2003, Bioinform..
[12] R. Shafer,et al. Genotypic predictors of human immunodeficiency virus type 1 drug resistance , 2006, Proceedings of the National Academy of Sciences.
[13] Alejandro Rosete,et al. Combinación de clasificadores para bioinformática , 2012, Computación y Sistemas.
[14] F. Wilcoxon. Individual Comparisons by Ranking Methods , 1945 .
[15] M. Porcel,et al. Redes neuronales artificiales , 2001 .
[16] Thomas Lengauer,et al. Geno2pheno: Interpreting Genotypic HIV Drug Resistance Tests , 2001, IEEE Intell. Syst..
[17] Thomas Villmann,et al. Mathematical Aspects of Neural Networks , 2003, ESANN.
[18] Barak A. Pearlmutter. Dynamic recurrent neural networks , 1990 .
[19] Giovanni Ulivi,et al. Evolutionary Fuzzy Modelling for Drug Resistant HIV-1 Treatment Optimization , 2008, Engineering Evolutionary Intelligent Systems.
[20] R. Jernigan,et al. Self‐consistent estimation of inter‐residue protein contact energies based on an equilibrium mixture approximation of residues , 1999, Proteins.
[21] Yvan Saeys,et al. Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks , 2006, IWINAC.
[22] Jan Komorowski,et al. A Rough Set-Based Model of HIV-1 Reverse Transcriptase Resistome , 2009, Bioinformatics and biology insights.
[23] Thomas Lengauer,et al. Data and text mining Computational methods for the design of effective therapies against drug resistant HIV strains , 2005 .
[24] José Ramón Hilera González,et al. Redes neuronales artificiales: fundamentos, modelos y aplicaciones , 1995 .