General composite Higgs models

A bstractWe construct a general class of pseudo-Goldstone composite Higgs models, within the minimal SO(5)/SO(4) coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the models to successfully pass the electroweak precision tests. Interestingly enough, the latter can also be passed by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type considered in the literature can be seen as particular limits of our class of models.

[1]  Duccio Pappadopulo,et al.  On the effect of resonances in composite Higgs phenomenology , 2011, 1109.1570.

[2]  M. Serone,et al.  Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions , 2008, 0801.1645.

[3]  C. Wagner,et al.  Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions , 2007, 0706.1281.

[4]  C. Csáki,et al.  Fully radiative electroweak symmetry breaking , 2005, hep-ph/0510366.

[5]  Gauge-Higgs unification in higher dimensions , 2001, hep-ph/0107331.

[6]  A. Pich,et al.  Chiral lagrangians for massive spin-1 fields , 1989 .

[7]  Roberto Contino,et al.  Model-independent bounds on a light Higgs , 2012, 1202.3415.

[8]  C. Grojean,et al.  Composite Higgs under LHC Experimental Scrutiny , 2012, 1202.1286.

[9]  S. Rychkov,et al.  Exploring T and S parameters in Vector Meson Dominance models of strong electroweak symmetry breaking , 2011, 1111.3534.

[10]  Higgs as a holographic pseudo-Goldstone boson , 2003, hep-ph/0306259.

[11]  M. Mühlleitner,et al.  Fingerprinting Higgs suspects at the LHC , 2012, 1202.3697.

[12]  A. Pomarol,et al.  Light custodians in natural composite Higgs models , 2006, hep-ph/0612048.

[13]  Riccardo Barbieri,et al.  Higgs boson from an extended symmetry , 2007, 0706.0432.

[14]  Z. Hioki,et al.  Electroweak Theory. Framework of On-Shell Renormalization and Study of Higher Order Effects , 1982 .

[15]  Roberto Contino,et al.  The Minimal Composite Higgs Model , 2005 .

[16]  A. Pomarol,et al.  A custodial symmetry for Zbb , 2006, hep-ph/0605341.

[17]  G. Altarelli,et al.  Toward a model-independent analysis of electroweak data , 1992 .

[18]  Y. Hosotani,et al.  Higgs boson mass and electroweak–gravity hierarchy from dynamical gauge–Higgs unification in the warped spacetime , 2005, hep-ph/0503020.

[19]  Howard Georgi,et al.  Anatomy of a composite Higgs model , 1985 .

[20]  V. M. Ghete,et al.  Search for heavy bottom-like quarks in 4.9 fb−1 of pp collisions at $ \sqrt {s} = 7 $ TeV , 2012 .

[21]  Roberto Contino,et al.  Warped/composite phenomenology simplified , 2006, hep-ph/0612180.

[22]  Electroweak symmetry breaking and precision tests with a fifth dimension , 2006, hep-ph/0605292.

[23]  M. Serone,et al.  Simple and realistic composite Higgs models in flat extra dimensions , 2010, 1012.2875.

[24]  A. Pomarol,et al.  Bulk fields and supersymmetry in a slice of AdS , 2000 .

[25]  Howard Georgi,et al.  Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.

[26]  M. Mühlleitner,et al.  Composite Higgs search at the LHC , 2010, 1003.3251.

[27]  Unification of Higgs and gauge fields in five dimensions , 2002, hep-ph/0210257.

[28]  G. Altarelli,et al.  Vacuum polarization effects of new physics on electroweak processes , 1991 .

[29]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[30]  A. Pomarol,et al.  Beyond the minimal composite Higgs model , 2009, 0902.1483.

[31]  A. Tesi,et al.  Implications of a light Higgs in composite models , 2012, 1205.0232.

[32]  Qaisar Shafi,et al.  Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model , 2001 .

[33]  Y. Grossman,et al.  Neutrino masses and mixings in non-factorizable geometry , 1999 .

[34]  Electroweak symmetry breaking and fermion masses from extra dimensions , 2003, hep-ph/0304220.

[35]  David B. Kaplan,et al.  Flavor at SSC energies: A New mechanism for dynamically generated fermion masses , 1991 .

[36]  V. M. Ghete,et al.  Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at sqrt(s) = 7 TeV , 2012, 1203.5410.

[37]  J. Mrázek,et al.  The other natural two Higgs doublet model , 2011, 1105.5403.

[38]  A. Wulzer,et al.  Light top partners for a light composite Higgs , 2012, 1204.6333.

[39]  Howard Georgi,et al.  SU(2) × U(1) breaking by vacuum misalignment , 1984 .

[40]  E. Witten Some Inequalities Among Hadron Masses , 1983 .

[41]  The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: a reappraisal after the measurements of Δms and BR(B→τντ) , 2006, hep-ph/0606167.

[42]  M. Serone Holographic methods and gauge–Higgs unification in flat extra dimensions , 2009, 0909.5619.

[43]  M. Carena,et al.  Electroweak constraints on warped models with custodial symmetry , 2007, hep-ph/0701055.

[44]  C. Grojean,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[45]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[46]  V. M. Ghete,et al.  Search for the standard model Higgs boson decaying into two photons in $pp$ collisions at $\sqrt{s}=7$ TeV , 2012 .

[47]  H. Georgi,et al.  (De)constructing dimensions. , 2001, Physical review letters.

[48]  Julius Wess,et al.  STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS. II. , 1969 .

[49]  The Tevatron Electroweak Working Group,et al.  Combination of CDF and D0 Results on the Mass of the Top Quark , 2010 .

[50]  J. T. Childers,et al.  Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb(-1) of pp collision data at √s=7 TeV with ATLAS. , 2012, Physical review letters.

[51]  Giuliano Panico,et al.  The discrete composite Higgs model , 2011, 1106.2719.

[52]  Riccardo Barbieri,et al.  Electroweak symmetry breaking after LEP1 and LEP2 , 2004, hep-ph/0405040.

[53]  S. Curtis,et al.  The 4D composite Higgs , 2011, 1110.1613.

[54]  G. Altarelli,et al.  Non standard analysis of electroweak precision data , 1993 .

[55]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[56]  Roberto Contino,et al.  Tasi 2009 lectures: The Higgs as a Composite Nambu-Goldstone Boson , 2010, 1005.4269.

[57]  M. Carena,et al.  Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2) , 2006, hep-ph/0607106.

[58]  The Hosotani Mechanism in Bulk Gauge Theories with an Orbifold Extra Space S 1 /Z 2 , 2001, hep-ph/0111327.

[59]  S. Weinberg Precise Relations between the Spectra of Vector and Axial-Vector Mesons , 1967 .