A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals

Abstract This article develops an efficient direct solver for solving numerically the high-order linear Fredholm integro-differential equations (FIDEs) with piecewise intervals under initial-boundary conditions. A Bernoulli matrix approach is implemented for solving linear and nonlinear FIDEs with piecewise intervals under initial boundary conditions. The main characteristic behind this approach is that it reduces such problem to those of solving a system of algebraic equations. A small number of Bernoulli polynomials is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving FIDEs with piecewise intervals.

[1]  Esmail Babolian,et al.  Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration , 2007, Appl. Math. Comput..

[2]  Han Dan-fu,et al.  Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration , 2007 .

[3]  Mehmet Sezer,et al.  Taylor collocation method for solution of systems of high-order linear Fredholm–Volterra integro-differential equations , 2006, Int. J. Comput. Math..

[4]  Eid H. Doha,et al.  A Jacobi-Jacobi dual-Petrov-Galerkin method for third- and fifth-order differential equations , 2011, Math. Comput. Model..

[5]  M. Reihani,et al.  Rationalized Haar functions method for solving Fredholm and Volterra integral equations , 2007 .

[6]  Mehmet Sezer,et al.  Taylor polynomial solutions of systems of linear differential equations with variable coefficients , 2005, Int. J. Comput. Math..

[7]  E. Yusufoglu,et al.  IMPROVED HOMOTOPY PERTURBATION METHOD FOR SOLVING FREDHOLM TYPE INTEGRO-DIFFERENTIAL EQUATIONS , 2009 .

[8]  Mehmet Sezer,et al.  Bernstein series solution of a class of linear integro-differential equations with weakly singular kernel , 2011, Appl. Math. Comput..

[9]  Mehmet Sezer,et al.  A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation , 2011, Appl. Math. Lett..

[10]  Abdollah Hadi-Vencheh,et al.  Solving second kind integral equations with hybrid Fourier and block-pulse functions , 2005, Appl. Math. Comput..

[11]  Ali H Bhrawy,et al.  A shifted Legendre spectral method for fractional-order multi-point boundary value problems , 2012 .

[12]  Eid H. Doha,et al.  Efficient spectral-Petrov-Galerkin methods for the integrated forms of third- and fifth-order elliptic differential equations using general parameters generalized Jacobi polynomials , 2012, Appl. Math. Comput..

[13]  Farshid Mirzaee,et al.  Numerical solution of integro‐differential equations by using rationalized Haar functions method , 2006 .

[14]  Beny Neta,et al.  Finite Differences versus Finite Elements for Solving Nonlinear Integro-differential Equations , 1985 .

[15]  Bruno Welfert,et al.  Numerical solution of a Fredholm integro-differential equation modelling neural networks , 2006 .

[16]  Mehmet Sezer,et al.  Laguerre polynomial approach for solving linear delay difference equations , 2011, Appl. Math. Comput..

[17]  Beny Neta,et al.  Numerical solution of a nonlinear integro-differential equation , 1982 .

[18]  Khosrow Maleknejad,et al.  A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations , 2012, Math. Comput. Model..

[19]  Temur Jangveladze,et al.  Large time asymptotic and numerical solution of a nonlinear diffusion model with memory , 2010, Comput. Math. Appl..

[20]  Temur Jangveladze,et al.  Large time behavior of solutions to a nonlinear integro-differential system , 2009 .

[21]  Mehmet Sezer,et al.  Legendre polynomial solutions of high-order linear Fredholm integro-differential equations , 2009, Appl. Math. Comput..

[22]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[23]  S. Shahmorad,et al.  Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation , 2005, Appl. Math. Comput..

[24]  Ali H. Bhrawy,et al.  Efficient spectral-Galerkin algorithms for direct solution of the integrated forms of second-order equations using ultraspherical polynomials , 2007, The ANZIAM Journal.

[25]  Yadollah Ordokhani,et al.  An Application of Walsh Functions for Fredholm-Hammerstein Integro-Differential Equations , 2010 .

[26]  Mehmet Sezer,et al.  A collocation method using Hermite polynomials for approximate solution of pantograph equations , 2011, J. Frankl. Inst..

[27]  Mehmet Sezer,et al.  Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients , 2011, Int. J. Comput. Math..

[28]  Mehmet Sezer,et al.  Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients , 2003, Appl. Math. Comput..

[29]  Ayşegül Akyüz-Daşcıogˇlu,et al.  A Chebyshev polynomial approach for linear Fredholm–Volterra integro-differential equations in the most general form , 2006 .

[30]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[31]  Khosrow Maleknejad,et al.  Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations , 2012 .

[32]  Jalil Rashidinia,et al.  The numerical solution of integro-differential equation by means of the Sinc method , 2007, Appl. Math. Comput..

[33]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[34]  Khosrow Maleknejad,et al.  Solving linear integro-differential equation system by Galerkin methods with hybrid functions , 2004, Appl. Math. Comput..

[35]  Esmail Babolian,et al.  Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets , 2009 .

[36]  R. Kress Linear Integral Equations , 1989 .

[37]  Temur Jangveladze,et al.  Galerkin finite element method for one nonlinear integro-differential model , 2011, Appl. Math. Comput..

[38]  Mehmet Sezer,et al.  Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases , 2011, Comput. Math. Appl..

[39]  Parviz Darania,et al.  A method for the numerical solution of the integro-differential equations , 2007, Appl. Math. Comput..

[40]  S. Shahmorad,et al.  Numerical solution of the system of Fredholm integro-differential equations by the Tau method , 2005, Appl. Math. Comput..

[41]  Ali H. Bhrawy,et al.  Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials , 2008 .

[42]  Mohammedi R. Abdel-Aziz,et al.  A comparison of Adomian's decomposition method and wavelet-Galerkin method for solving integro-differential equations , 2003, Appl. Math. Comput..

[43]  Khosrow Maleknejad,et al.  Numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method , 2006, Appl. Math. Comput..

[44]  A. H. Bhrawy,et al.  Jacobi spectral Galerkin method for the integrated forms of second-order differential equations , 2010, Appl. Math. Comput..

[45]  M. Razzaghi,et al.  Hybrid functions approach for nonlinear constrained optimal control problems , 2012 .

[46]  Temur Jangveladze,et al.  Large time behavior of solutions and finite difference scheme to a nonlinear integro-differential equation , 2009, Comput. Math. Appl..

[47]  Khosrow Maleknejad,et al.  Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations , 2011, Comput. Math. Appl..

[48]  P. Natalini,et al.  A generalization of the Bernoulli polynomials , 2003 .

[49]  F. A. Costabile,et al.  Expansion Over a Rectangle of Real Functions in Bernoulli Polynomials and Applications , 2001 .

[50]  Temur Jangveladze,et al.  Finite difference approximation of a nonlinear integro-differential system , 2009, Appl. Math. Comput..

[51]  Morteza Ebrahimi,et al.  Monte Carlo method for solving Fredholm integral equations of the second kind , 2008, Appl. Math. Comput..