Desensitized CMOS Low-Noise Amplifiers

The minimum attainable noise figure for scaled- CMOS low-noise amplifiers (LNAs) is limited by impedance mismatches such as the well-known noise/power tradeoff. In this paper, we show that a power-constrained optimization of the device noise resistance parameter, Rn, significantly reduces the impact of mismatches and variations and leads to an almost simultaneous noise and power match. This process, called desensitization, makes the design largely immune to measurement and modeling errors and manufacturing variations, and significantly reduces frequency-dependent noise mismatches in wide-band LNAs. Measured data from devices and desensitized LNAs designed on 180-nm and 90-nm CMOS processes shows that: (1) a device size selected for optimum Rnmiddot is less sensitive to source impedance mismatches and provides a wide-band noise match; and (2) LNAs approach a simultaneous input and noise match, and exhibit significant improvements (ges 2x) in their wide-band noise performance.

[1]  M. E. Mokari,et al.  A new method of noise parameter calculation using direct matrix analysis , 1992 .

[2]  P. Leroux,et al.  A 0.8 dB NF ESD-protected 9 mW CMOS LNA , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[3]  R.E. Lehmann,et al.  X-band Monolithic Series Feedback LNA , 1985, 1985 IEEE MTT-S International Microwave Symposium Digest.

[4]  R. Havens,et al.  Noise modeling for RF CMOS circuit simulation , 2003 .

[5]  David J. Allstot,et al.  Desensitized design of MOS low noise amplifiers by R/sub n/ minimization , 2004, Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, 2004. ICECS 2004..

[6]  M. J. Deen,et al.  High frequency noise of MOSFETs I Modeling , 1998 .

[7]  A. Ziel Noise in solid state devices and circuits , 1986 .

[8]  H. Fukui,et al.  Available Power Gain, Noise Figure, and Noise Measure of Two-Ports and Their Graphical Representations , 1966 .

[9]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .

[10]  D. K. Shaeffer,et al.  Comment on Corrections to “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier” , 2006 .

[11]  Chih-Hung Chen,et al.  Analytical modeling of MOSFET noise parameters for analog and RF applications , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[12]  David J. Allstot,et al.  Measurement and modeling of noise parameters for desensitized low noise amplifiers , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[13]  R. Bishop,et al.  A 1.4 V/5 GHz, 90-nm system-in-a-package LNA , 2006, 2006 IEEE Radio and Wireless Symposium.

[14]  H.T. Friis,et al.  Noise Figures of Radio Receivers , 1944, Proceedings of the IRE.

[15]  Hermann A. Haus,et al.  Canonical Form of Linear Noisy Networks , 1958 .

[16]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[17]  Robert W. Dutton,et al.  A noise optimization technique for integrated low-noise amplifiers , 2002, IEEE J. Solid State Circuits.

[18]  Xiang Guan,et al.  A 24-GHz CMOS front-end , 2004, IEEE Journal of Solid-State Circuits.

[19]  R. Pollard,et al.  R/sub n/ circles for series-feedback amplifiers , 1999 .

[20]  D. Pozar Microwave Engineering , 1990 .

[21]  H. Fukui,et al.  Design of Microwave GaAs MESFET's for Broad-Band Low-Noise Amplifiers , 1979 .

[22]  Peter Russer,et al.  An efficient method for computer aided noise analysis of linear amplifier networks , 1976 .

[23]  K. Soumyanath,et al.  Measurement and modeling errors in noise parameters of scaled-CMOS devices , 2006, IEEE Transactions on Microwave Theory and Techniques.

[24]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[25]  D. K. Shaeffer,et al.  Corrections to "A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier" , 2005, IEEE J. Solid State Circuits.