Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

[1]  Erwin Taenzer Tracking Multiple Targets Simultaneously with a Phased Array Radar , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[2]  V. Rahmat-Samii,et al.  Genetic algorithms in engineering electromagnetics , 1997 .

[3]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[4]  J. R. Descardeci,et al.  Tilt angle and sidelobe level control of array antennas by using genetic algorithm , 2001, Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. (Cat. No.01TH8568).

[5]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[6]  H. D. Griffiths,et al.  Resource Management For A Rotating Multi-function Radar , 1997 .

[7]  Laurent Dussopt,et al.  Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band , 2013, IEEE Transactions on Antennas and Propagation.

[8]  A. Farina,et al.  Knowledge-based radar signal and data processing: a tutorial review , 2006, IEEE Signal Processing Magazine.

[9]  Douglas H. Werner,et al.  Adaptive mutation parameter toggling genetic algorithm for phase-only array synthesis , 2002 .

[10]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[11]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[12]  M. S. Woolfson,et al.  Target tracking algorithms for phased array radar , 1991 .

[13]  D. Marcano,et al.  Planar array antenna synthesis using genetic algorithms with a penalty function , 1997, 1997 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. 'Linking to the Next Century'. Proceedings.

[14]  Vijayan K. Asari,et al.  Method for Optimal Sensor Deployment on 3D Terrains Utilizing a Steady State Genetic Algorithm with a Guided Walk Mutation Operator Based on the Wavelet Transform , 2012, Sensors.

[15]  R. Fitzgerald,et al.  Decoupled Kalman filters for phased array radar tracking , 1983 .

[16]  Melvin L. Stone,et al.  Radars for the Detection and Tracking of Ballistic Missiles, Satellites, and Planets , 2000 .

[17]  Yilong Lu,et al.  Sidelobe reduction in array-pattern synthesis using genetic algorithm , 1997 .

[18]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[19]  Kazimierz Siwiak,et al.  Radiowave Propagation and Antennas for Personal Communications , 1995 .

[20]  J. Y. Lau,et al.  Reconfigurable Transmitarray Design Approaches for Beamforming Applications , 2012, IEEE Transactions on Antennas and Propagation.

[21]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[22]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[23]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[24]  Joseph A. O'Sullivan,et al.  Automatic target recognition using sequences of high resolution radar range-profiles , 2000, IEEE Trans. Aerosp. Electron. Syst..

[25]  D. Marcano,et al.  Synthesis of antenna arrays using genetic algorithms , 2000 .

[26]  Shau-Shiun Jan,et al.  Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications , 2013, Sensors.

[27]  Eric Michielssen,et al.  Genetic algorithm optimization applied to electromagnetics: a review , 1997 .

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Ram M. Narayanan,et al.  Design, Performance and Optimization for Multimodal Radar Operation , 2012, Sensors.

[30]  W. K. Stafford,et al.  MESAR (multi-function, electronically scanned, adaptive radar) , 1997 .

[31]  X. Rong Li,et al.  Survey of maneuvering target tracking: dynamic models , 2000, SPIE Defense + Commercial Sensing.

[32]  Leonardo Wayland Torres Silva Otimização do controle eletrônico do diagrama de radiação de arranjos de antenas usando algoritmos genéticos com codificação real , 2006 .

[33]  W. Sander,et al.  Experimental phased array radar ELRA with extended flexibility , 1990, IEEE Aerospace and Electronic Systems Magazine.

[34]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[35]  R. Srinivasan Distributed radar detection theory , 1986 .

[36]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[37]  R. J. Mitchell,et al.  Array pattern control in the complex plane optimised by a genetic algorithm , 1997 .

[38]  Evaggelos Geraniotis,et al.  Robust data fusion for multisensor detection systems , 1990, IEEE Trans. Inf. Theory.

[39]  Ruey-Beei Wu,et al.  Modeling antenna array elements and bandwidth enhanced by genetic algorithm , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[40]  R. Haupt Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[41]  P. van Genderen,et al.  The APAR multifunction radar - system overview , 2003, IEEE International Symposium on Phased Array Systems and Technology, 2003..

[42]  Ricardo H. C. Takahashi,et al.  The real-biased multiobjective genetic algorithm and its application to the design of wire antennas , 2003 .

[43]  D. J. Salmond,et al.  Track maintenance using measurements of target extent , 2003 .

[44]  William C. Lindsey Improvements to be Realized Through the Use of Block-Coded Communication Systems , 1966, IEEE Transactions on Aerospace and Electronic Systems.

[45]  C.L. Dolph,et al.  A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level , 1946, Proceedings of the IRE.

[46]  T. Jiang,et al.  Low-DC Voltage-Controlled Steering-Antenna Radome Utilizing Tunable Active Metamaterial , 2012, IEEE Transactions on Microwave Theory and Techniques.

[47]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[48]  Douglas H. Werner,et al.  Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning , 2002 .

[49]  Hsueh-Jyh Li,et al.  Using range profiles as feature vectors to identify aerospace objects , 1993 .

[50]  Christian Dior,et al.  Photo gallery. , 1984, Profiles in hospital marketing.

[51]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[52]  Andrew K. Skidmore,et al.  Using a Genetic Algorithm as an Optimal Band Selector in the Mid and Thermal Infrared (2.5–14 μm) to Discriminate Vegetation Species , 2012, Sensors.

[53]  Wulf-Dieter Wirth,et al.  Radar Techniques Using Array Antennas , 2001 .

[54]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[55]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[56]  Michael Kraft,et al.  Genetic Algorithm for the Design of Electro-Mechanical Sigma Delta Modulator MEMS Sensors , 2011, Sensors.

[57]  Andy Marvin,et al.  Genetic algorithm using real parameters for array antenna design optimisation , 1999, MTT/ED/AP/LEO Societies Joint Chapter United Kingdom and Republic of Ireland Section. 1999 High Frequency Postgraduate Student Colloquium (Cat. No.99TH8409).

[58]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[59]  Yimin Liu,et al.  Extended Target Recognition in Cognitive Radar Networks , 2010, Sensors.

[60]  Peter J. Kahrilas,et al.  HAPDAR—An operational phased array radar , 1968 .