Owls see in stereo much like humans do.

While 3D experiences through binocular disparity sensitivity have acquired special status in the understanding of human stereo vision, much remains to be learned about how binocularity is put to use in animals. The owl provides an exceptional model to study stereo vision as it displays one of the highest degrees of binocular specialization throughout the animal kingdom. In a series of six behavioral experiments, equivalent to hallmark human psychophysical studies, I compiled an extensive body of stereo performance data from two trained owls. Computer-generated, binocular random-dot patterns were used to ensure pure stereo performance measurements. In all cases, I found that owls perform much like humans do, viz.: (1) disparity alone can evoke figure-ground segmentation; (2) selective use of "relative" rather than "absolute" disparity; (3) hyperacute sensitivity; (4) disparity processing allows for the avoidance of monocular feature detection prior to object recognition; (5) large binocular disparities are not tolerated; (6) disparity guides the perceptual organization of 2D shape. The robustness and very nature of these binocular disparity-based perceptual phenomena bear out that owls, like humans, exploit the third dimension to facilitate early figure-ground segmentation of tangible objects.

[1]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[2]  D. Regan,et al.  Necessary conditions for the perception of motion in depth. , 1986, Investigative ophthalmology & visual science.

[3]  Eli Brenner,et al.  Comparing extra-retinal information about distance and direction , 2000, Vision Research.

[4]  Casper J Erkelens,et al.  The effect of changing size on vergence is mediated by changing disparity. , 2009, Journal of vision.

[5]  Hermann Wagner,et al.  Stereoscopic depth perception in the owl , 1998, Neuroreport.

[6]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[7]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[8]  H. Collewijn,et al.  Eye movements and stereopsis during dichoptic viewing of moving random-dot stereograms , 1985, Vision Research.

[9]  Laurie M. Wilcox,et al.  The role of monocularly visible regions in depth and surface perception , 2009, Vision Research.

[10]  M. Cartmill Rethinking primate origins. , 1974, Science.

[11]  Hermann Wagner,et al.  Vernier acuity in barn owls , 2007, Vision Research.

[12]  T. Collett Vision: Simple stereopsis , 1996, Current Biology.

[13]  Martin Kaye,et al.  Stereopsis without binocular correlation , 1978, Vision Research.

[14]  F. A. Miles,et al.  Vergence eye movements in response to binocular disparity without depth perception , 1997, Nature.

[15]  B. C. Motter,et al.  Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms , 1985, Vision Research.

[16]  S. McKee,et al.  The imprecision of stereopsis , 1990, Vision Research.

[17]  Ian P Howard,et al.  Vergence modulation as a cue to movement in depth. , 2008, Spatial vision.

[18]  L. Thibos,et al.  Retinal limits to the detection and resolution of gratings. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[19]  David Mumford,et al.  A Bayesian treatment of the stereo correspondence problem using half-occluded regions , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Jerome Baron,et al.  Spatiotemporal frequency tuning dynamics of neurons in the owl visual wulst. , 2010, Journal of neurophysiology.

[21]  K Nakayama,et al.  Binocular visual surface perception. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Hermann Wagner,et al.  How owls structure visual information , 2003, Animal Cognition.

[23]  O. Braddick Visual hyperacuity. , 1984, Nature.

[24]  Christopher W Tyler Representation of stereoscopic structure in human and monkey cortex , 2004, Trends in Neurosciences.

[25]  Svetlana S. Georgieva,et al.  The Processing of Three-Dimensional Shape from Disparity in the Human Brain , 2009, The Journal of Neuroscience.

[26]  Shinsuke Shimojo,et al.  Visual surface representation: a critical link between lower-level and higher level vision , 1995 .

[27]  Bruce G. Cumming,et al.  Adaptation to Natural Binocular Disparities in Primate V1 Explained by a Generalized Energy Model , 2008, Neuron.

[28]  J. Pettigrew,et al.  Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto alba. , 1989, Brain, behavior and evolution.

[29]  Hermann Wagner,et al.  Spatial contrast sensitivity and grating acuity of barn owls. , 2009, Journal of vision.

[30]  James T Todd,et al.  The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? , 2003, Perception & psychophysics.

[31]  Bart Farell,et al.  Orientation-Specific Computation in Stereoscopic Vision , 2006, The Journal of Neuroscience.

[32]  J. Todd Review TRENDS in Cognitive Sciences Vol.8 No.3 March 2004 The visual perception of 3D shape q , 2022 .

[33]  E I Knudsen,et al.  Fused Binocular Vision is Required for Development of Proper Eye Alignment in Barn Owls , 1989, Visual Neuroscience.

[34]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[35]  Jerome Baron,et al.  Spatiotemporal frequency and speed tuning in the owl visual wulst , 2009, The European journal of neuroscience.

[36]  William Hodos,et al.  Spatial contrast sensitivity of birds , 2006, Journal of Comparative Physiology A.

[37]  H. Wagner,et al.  Hierarchical Processing of Horizontal Disparity Information in the Visual Forebrain of Behaving Owls , 2001, The Journal of Neuroscience.

[38]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[39]  Charless C. Fowlkes,et al.  Natural-Scene Statistics Predict How the Figure–Ground Cue of Convexity Affects Human Depth Perception , 2010, The Journal of Neuroscience.

[40]  D. Regan,et al.  Binocular and monocular stimuli for motion in depth: Changing-disparity and changing-size feed the same motion-in-depth stage , 1979, Vision Research.

[41]  David J. Fleet,et al.  Human cortical activity correlates with stereoscopic depth perception. , 2001, Journal of neurophysiology.

[42]  B JULESZ,et al.  Binocular Depth Perception without Familiarity Cues , 1964, Science.

[43]  A. Parker,et al.  The Precision of Single Neuron Responses in Cortical Area V1 during Stereoscopic Depth Judgments , 2000, The Journal of Neuroscience.

[44]  Hermann Wagner,et al.  Disparity sensitivity in man and owl: Psychophysical evidence for equivalent perception of shape-from-stereo. , 2011, Journal of vision.

[45]  Na Na,et al.  Evolution of Binocular Vision , 1925 .

[46]  R. Born,et al.  Stereopsis , 2008, Current Biology.

[47]  K Nakayama,et al.  Stereoscopic Depth: Its Relation to Image Segmentation, Grouping, and the Recognition of Occluded Objects , 1989, Perception.

[48]  J. Pettigrew,et al.  Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). , 1976, Science.

[49]  Robert Tibshirani,et al.  Bootstrap confidence intervals and bootstrap approximations , 1987 .

[50]  B. Julesz Dialogues on Perception , 1994 .

[51]  David J Heeger,et al.  Stereoscopic processing of absolute and relative disparity in human visual cortex. , 2004, Journal of neurophysiology.

[52]  J. Pettigrew,et al.  Effect of monocular deprivation on binocular neurones in the owl's visual Wulst , 1976, Nature.

[53]  E I Knudsen,et al.  Neural maps of head movement vector and speed in the optic tectum of the barn owl. , 1990, Journal of neurophysiology.

[54]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[55]  A. Fitzgibbon,et al.  Humans Ignore Motion and Stereo Cues in Favor of a Fictional Stable World , 2006, Current Biology.

[56]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[57]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[58]  Gregory C. DeAngelis,et al.  A neural representation of depth from motion parallax in macaque visual cortex , 2008, Nature.

[59]  R. Fox,et al.  The computation of disparity and depth in stereograms , 1985, Perception & psychophysics.

[60]  Anitha Pasupathy,et al.  Partial Occlusion Modulates Contour-Based Shape Encoding in Primate Area V4 , 2011, The Journal of Neuroscience.

[61]  Jeffrey Spivak A Cyclopean Vision , 2010 .

[62]  Casper J. Erkelens,et al.  Fusional limits for a large random-dot stereogram , 1988, Vision Research.

[63]  Hermann Wagner,et al.  Depth generalization from stereo to motion parallax in the owl , 2002, Journal of Comparative Physiology A.

[64]  R. Patterson,et al.  Human Stereopsis , 1992, Human factors.

[65]  Manish Singh Modal and Amodal Completion Generate Different Shapes , 2004, Psychological science.

[66]  W. Uttal,et al.  Parameters of tachistoscopic stereopsis , 1975, Vision Research.

[67]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[68]  J. D. Pettigrew,et al.  Vision: Is there a single, most-efficient algorithm for stereopsis? , 1991 .

[69]  B. Anderson Stereovision: beyond disparity computations , 1998, Trends in Cognitive Sciences.

[70]  C W Tyler,et al.  Induced stereomovement. , 1974, Vision research.

[71]  Christopher P. Heesy,et al.  Seeing in stereo: The ecology and evolution of primate binocular vision and stereopsis , 2009 .

[72]  A. B. Nutt Binocular vision. , 1945, The British orthoptic journal.

[73]  Ken Nakayama,et al.  Resolving Border Disputes in Midlevel Vision , 2005, Neuron.

[74]  Paul B Hibbard,et al.  Evidence for relative disparity matching in the perception of an ambiguous stereogram. , 2010, Journal of vision.

[75]  José Antonio Aznar-Casanova,et al.  [On the metric of visual space]. , 2006, Arquivos brasileiros de oftalmologia.

[76]  Julie M. Harris,et al.  Is stereopsis effective in breaking camouflage for moving targets? , 1997, Vision Research.

[77]  A. Parker,et al.  Binocular Neurons in V1 of Awake Monkeys Are Selective for Absolute, Not Relative, Disparity , 1999, The Journal of Neuroscience.

[78]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[79]  Lawrence K. Cormack,et al.  Hyperacuity, superresolution and gap resolution in human stereopsis , 1989, Vision Research.

[80]  G. Westheimer,et al.  Cooperative neural processes involved in stereoscopic acuity , 1979, Experimental Brain Research.

[81]  H. Collewijn,et al.  Motion perception during dichoptic viewing of moving random-dot stereograms , 1985, Vision Research.

[82]  A. Cobo-Lewis,et al.  Monocular dot-density cues in random-dot stereograms , 1996, Vision Research.

[83]  G. Martin What is binocular vision for? A birds' eye view. , 2009, Journal of vision.

[84]  R. Fox,et al.  Stereopsis in the falcon. , 1977, Science.

[85]  E. W. Bough Stereoscopic Vision in the Macaque Monkey: a Behavioural Demonstration , 1970, Nature.

[86]  Eli Brenner,et al.  Perceived motion in depth , 1996, Vision Research.

[87]  F. Qiu,et al.  Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules , 2005, Neuron.

[88]  Andrew N. Iwaniuk,et al.  The evolution of stereopsis and the Wulst in caprimulgiform birds: a comparative analysis , 2006, Journal of Comparative Physiology A.