Linker Histone H1 Regulates Specific Gene Expression but Not Global Transcription In Vivo

[1]  Steven L. Cohen,et al.  Structural similarity between TAFs and the heterotetrameric core of the histone octamer , 1996, Nature.

[2]  Xuetong Shen,et al.  Linker histories are not essential and affect chromatin condensation in vivo , 1995, Cell.

[3]  M. Grunstein,et al.  Yeast histone H4 and H3 N‐termini have different effects on the chromatin structure of the GAL1 promoter. , 1995, The EMBO journal.

[4]  A. Wolffe,et al.  Nucleosomal anatomy--where are the histones? , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  K. V. van Holde,et al.  Low levels of exogenous histone H1 in yeast cause cell death. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  H. Kandolf The H1A histone variant is an in vivo repressor of oocyte-type 5S gene transcription in Xenopus laevis embryos. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Wolffe,et al.  Nucleosome positioning and modification: chromatin structures that potentiate transcription. , 1994, Trends in biochemical sciences.

[8]  A. Wolffe,et al.  Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. , 1994, Genes & development.

[9]  F. Thoma,et al.  Histone H1 expressed in Saccharomyces cerevisiae binds to chromatin and affects survival, growth, transcription, and plasmid stability but does not change nucleosomal spacing , 1994, Molecular and cellular biology.

[10]  M. Gorovsky,et al.  TATA-binding protein and nuclear differentiation in Tetrahymena thermophila , 1994, Molecular and cellular biology.

[11]  C. Allis,et al.  Four distinct and unusual linker proteins in a mitotically dividing nucleus are derived from a 71-kilodalton polyprotein, lack p34cdc2 sites, and contain protein kinase A sites , 1994, Molecular and cellular biology.

[12]  M. Gorovsky,et al.  High frequency vector-mediated transformation and gene replacement in Tetrahymena. , 1994, Nucleic acids research.

[13]  J. Workman,et al.  Experimental analysis of chromatin function in transcription control. , 1994, Critical reviews in eukaryotic gene expression.

[14]  S. Burley,et al.  Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5 , 1993, Nature.

[15]  J. T. Kadonaga,et al.  Role of chromatin structure in the regulation of transcription by RNA polymerase II. , 1993, Current opinion in cell biology.

[16]  K. Karrer,et al.  Two distinct gene subfamilies within the family of cysteine protease genes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  V. Ramakrishnan,et al.  Crystal structure of globular domain of histone H5 and its implications for nucleosome binding , 1993, Nature.

[18]  K. McGrath,et al.  Perspectives on tubulin isotype function and evolution based on the observation that Tetrahymena thermophila microtubules contain a single α‐ and β‐tubulin , 1993 .

[19]  M. Kladde,et al.  Nucleosome positioning and transcription. , 1993, Cold Spring Harbor symposia on quantitative biology.

[20]  K. V. van Holde,et al.  Histone H1 and transcription: still an enigma? , 1992, Journal of cell science.

[21]  E. M. Bradbury,et al.  Mobile nucleosomes‐‐a general behavior. , 1992, The EMBO journal.

[22]  Kevin Struhl,et al.  The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells , 1992, Cell.

[23]  A. Ishihama,et al.  Cloning and sequence determination of the Schizosaccharomyces pombe rpb1 gene encoding the largest subunit of RNA polymerase II. , 1991, Nucleic acids research.

[24]  B. Daneholt,et al.  Histone H1 and transcription. , 1990, Trends in biochemical sciences.

[25]  M. Gorovsky,et al.  Transcriptional regulation of gene expression in Tetrahymena thermophila. , 1990, Nucleic acids research.

[26]  K. Karrer,et al.  Constancy of adenine methylation in Tetrahymena macronuclear DNA. , 1990, The Journal of protozoology.

[27]  M. Grunstein Histone function in transcription. , 1990, Annual review of cell biology.

[28]  M. Tanaka,et al.  An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. , 1989, Nucleic acids research.

[29]  M. Gorovsky,et al.  Localization and expression of mRNA for a macronuclear-specific histone H2A variant (hv1) during the cell cycle and conjugation of Tetrahymena thermophila , 1988, Molecular and cellular biology.

[30]  A. Grimes,et al.  A total extract dot blot hybridization procedure for mRNA quantitation in small samples of tissues or cultured cells. , 1988, Analytical biochemistry.

[31]  M. Grunstein,et al.  Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. , 1988, The EMBO journal.

[32]  G. Bannon,et al.  mRNA stability plays a major role in regulating the temperature-specific expression of a Tetrahymena thermophila surface protein , 1988, Molecular and cellular biology.

[33]  H. Hayashi,et al.  Tetrahymena histone H1. Isolation and amino acid sequence lacking the central hydrophobic domain conserved in other H1 histones. , 1987, Journal of biochemistry.

[34]  C. Allis,et al.  An intervening sequence in an unusual histone H1 gene of Tetrahymena thermophila. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Michael Shales,et al.  Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases , 1985, Cell.

[36]  F. Tashiro,et al.  Tetrahymena thermophila glutamine tRNA and its gene that corresponds to UAA termination codon. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. C. Wiggins,et al.  Proteolytic processing of h1-like histones in chromatin: a physiologically and developmentally regulated event in Tetrahymena micronuclei , 1984, The Journal of cell biology.

[38]  M. Yao,et al.  Sequence organization within and flanking clusters of 5S ribosomal RNA genes in Tetrahymena. , 1984, Nucleic Acids Research.

[39]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[40]  P. Bruns,et al.  Cloning of abundant mRNA species present during conjugation of Tetrahymena thermophila: identification of mRNA species present exclusively during meiosis , 1983, Molecular and cellular biology.

[41]  C. Allis,et al.  Multiple, independently regulated, polyadenylated messages for histone H3 and H4 in Tetrahymena. , 1983, Nucleic acids research.

[42]  M. Gorovsky,et al.  Regulation of protein synthesis in Tetrahymena. Quantitative estimates of the parameters determining the rates of protein synthesis in growing, starved, and starved-deciliated cells. , 1983, The Journal of biological chemistry.

[43]  J. Engberg,et al.  Detailed transcription map of the extrachromosomal ribosomal RNA genes in Tetrahymena thermophila. , 1980, Journal of molecular biology.

[44]  M. Gorovsky Genome organization and reorganization in Tetrahymena. , 1980, Annual review of genetics.

[45]  B. Hamkalo,et al.  Chromatin Structure and Function , 1979, NATO Advanced Study Institutes Series.

[46]  W. Rutter,et al.  Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. , 1979, Biochemistry.

[47]  Claudio Nicolini,et al.  Chromatin Structure and Function , 1979, NATO Advanced Study Institutes Series.

[48]  W. Franke,et al.  Introduction of hidden breaks during rRNA maturation and ageing in Tetrahymena pyriformis. , 1978, European journal of biochemistry.

[49]  M. Yao,et al.  Isolation of micro- and macronuclei of Tetrahymena pyriformis. , 1975, Methods in cell biology.

[50]  M. Gorovsky Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure and function of eukaryotic nuclei. , 1973, The Journal of protozoology.