Efficiency of the Approximated Shape Parameter Estimator in the Generalized Gaussian Distribution

In this paper, we study the efficiency of an explicit approximated estimator of shape parameter p in a generalized Gaussian distribution. An estimator for p based on the method of moments does not always exist. However, such an estimator can be found with high probability for most practical situations. The proposed estimator is an explicit approximate solution to the transcendental estimator obtained by the method of moments. We obtain an explicit expression of its asymptotic variance, and we provide a procedure for constructing confidence intervals for p.

[1]  M. Varanasi,et al.  Parametric generalized Gaussian density estimation , 1989 .

[2]  J. G. Kalbfleisch Probability and Statistical Inference , 1977 .

[3]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[4]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[5]  J. A. Domínguez-Molina A practical procedure to estimate the shape parameter in the generalized Gaussian distribution , 2002 .

[6]  Alberto Leon-Garcia,et al.  Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video , 1995, IEEE Trans. Circuits Syst. Video Technol..

[7]  López Esquivel,et al.  Una Metodología de Investigación en la Estimación del Parámetro de Forma de la Distribución Gaussiana Generalizada , 2000 .

[8]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[9]  L. Stefanski,et al.  The Calculus of M-Estimation , 2002 .

[10]  Andrzej Cichocki,et al.  Local stability analysis of flexible independent component analysis algorithm , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[11]  Norman C. Beaulieu,et al.  Novel Low-Complexity Estimators for the Shape Parameter of the Generalized Gaussian Distribution , 2009, IEEE Transactions on Vehicular Technology.

[12]  Jose C. Principe,et al.  Minimum entropy algorithms for source separation , 1998, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268).

[13]  I. Olkin An inequality satisfied by the gamma function , 1958 .