Randomized PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension

We design an on-line algorithm for Principal Component Analysis. In each trial the current instance is projected onto a probabilistically chosen low dimensional subspace. The total expected quadratic approximation error equals the total quadratic approximation error of the best subspace chosen in hindsight plus some additional term that grows linearly in dimension of the subspace but logarithmically in the dimension of the instances.

[1]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[4]  Y. Censor,et al.  An iterative row-action method for interval convex programming , 1981 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[7]  David Haussler,et al.  How to use expert advice , 1993, STOC.

[8]  Manfred K. Warmuth,et al.  The Weighted Majority Algorithm , 1994, Inf. Comput..

[9]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[10]  Manfred K. Warmuth,et al.  Additive versus exponentiated gradient updates for linear prediction , 1995, STOC '95.

[11]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[12]  Manfred K. Warmuth,et al.  Averaging Expert Predictions , 1999, EuroCOLT.

[13]  Manfred K. Warmuth,et al.  Relative loss bounds for single neurons , 1999, IEEE Trans. Neural Networks.

[14]  Manfred K. Warmuth,et al.  Tracking a Small Set of Experts by Mixing Past Posteriors , 2003, J. Mach. Learn. Res..

[15]  Mark Herbster,et al.  Tracking the Best Linear Predictor , 2001, J. Mach. Learn. Res..

[16]  Manfred K. Warmuth,et al.  Path Kernels and Multiplicative Updates , 2002, J. Mach. Learn. Res..

[17]  Manfred K. Warmuth,et al.  Relative Loss Bounds for Multidimensional Regression Problems , 1997, Machine Learning.

[18]  Mark Herbster,et al.  Tracking the Best Expert , 1995, Machine Learning.

[19]  Manfred K. Warmuth,et al.  Relative Loss Bounds for On-Line Density Estimation with the Exponential Family of Distributions , 1999, Machine Learning.

[20]  Gunnar Rätsch,et al.  Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection , 2004, J. Mach. Learn. Res..

[21]  Nello Cristianini,et al.  On the eigenspectrum of the gram matrix and the generalization error of kernel-PCA , 2005, IEEE Transactions on Information Theory.

[22]  S. V. N. Vishwanathan,et al.  Leaving the Span , 2005, COLT.

[23]  Manfred K. Warmuth,et al.  Optimum Follow the Leader Algorithm , 2005, COLT.

[24]  Santosh S. Vempala,et al.  Efficient algorithms for online decision problems , 2005, Journal of computer and system sciences (Print).

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  Babak Hassibi,et al.  The p-norm generalization of the LMS algorithm for adaptive filtering , 2003, IEEE Transactions on Signal Processing.

[27]  Koby Crammer,et al.  Online Tracking of Linear Subspaces , 2006, COLT.

[28]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[29]  Gunnar Rätsch,et al.  Totally corrective boosting algorithms that maximize the margin , 2006, ICML.

[30]  Manfred K. Warmuth,et al.  Online kernel PCA with entropic matrix updates , 2007, ICML '07.

[31]  Manfred K. Warmuth,et al.  Learning Permutations with Exponential Weights , 2007, COLT.

[32]  Manfred K. Warmuth When Is There a Free Matrix Lunch? , 2007, COLT.

[33]  Claudio Gentile,et al.  Improved Risk Tail Bounds for On-Line Algorithms , 2005, IEEE Transactions on Information Theory.