Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds

Speed and memory requirements of branch and bound algorithms depend on the selection strategy of which candidate node to process next. The goal of this paper is to experimentally investigate this influence to the performance of sequential and parallel branch and bound algorithms. The experiments have been performed solving a number of multidimensional test problems for global optimization. Branch and bound algorithm using simplicial partitions and combination of Lipschitz bounds has been investigated. Similar results may be expected for other branch and bound algorithms.

[1]  C. C. Meewella,et al.  An algorithm for global optimization of Lipschitz continuous functions , 1988 .

[2]  Panos M. Pardalos,et al.  Solving Combinatorial Optimization Problems in Parallel - Methods and Techniques , 1996 .

[3]  Roman G. Strongin,et al.  Algorithms for multi-extremal mathematical programming problems employing the set of joint space-filling curves , 1992, J. Glob. Optim..

[4]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[5]  Julius Žilinskas,et al.  P-algorithm based on a simplicial statistical model of multimodal functions , 2010 .

[6]  Remigijus Paulavičius,et al.  Analysis of different norms and corresponding Lipschitz constants for global optimization in multidi , 2007 .

[7]  Graham R. Wood,et al.  The bisection method in higher dimensions , 1992, Math. Program..

[8]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[9]  Antanas Zilinskas,et al.  Branch and bound algorithm for multidimensional scaling with city-block metric , 2009, J. Glob. Optim..

[10]  Mirjam Dür,et al.  Probabilistic subproblem selection in branch-and-bound algorithms , 2005 .

[11]  Panos M. Pardalos,et al.  SCOOP: Solving Combinatorial Optimization Problems in Parallel , 1996, Solving Combinatorial Optimization Problems in Parallel.

[12]  A. ilinskas,et al.  Global optimization based on a statistical model and simplicial partitioning , 2002 .

[13]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[14]  Julius Žilinskas,et al.  Improved Lipschitz bounds with the first norm for function values over multidimensional simplex , 2008 .

[15]  D. Mayne,et al.  Outer approximation algorithm for nondifferentiable optimization problems , 1984 .

[16]  Vladik Kreinovich,et al.  Theoretical Justification of a Heuristic Subbox Selection Criterion , 2001 .

[17]  R. Horst,et al.  On the convergence of global methods in multiextremal optimization , 1987 .

[18]  Julius Žilinskas,et al.  Branch and bound with simplicial partitions for global optimization , 2008 .

[19]  Julius Zilinskas,et al.  Parallel branch and bound for global optimization with combination of Lipschitz bounds , 2011, Optim. Methods Softw..

[20]  David Q. Mayne,et al.  Efficient domain partitioning algorithms for global optimization of rational and Lipschitz continuous functions , 1989 .

[21]  E. A. Galperin,et al.  Precision, complexity, and computational schemes of the cubic algorithm , 1988 .

[22]  Julius Žilinskas,et al.  REDUCING OF SEARCH SPACE OF MULTIDIMENSIONAL SCALING PROBLEMS WITH DATA EXPOSING SYMMETRIES , 2022 .

[23]  Remigijus Paulavi INVESTIGATION OF SELECTION STRATEGIES IN BRANCH AND BOUND ALGORITHM WITH SIMPLICIAL PARTITIONS AND COMBINATION OF LIPSCHITZ BOUNDS , 2009 .

[24]  János D. Pintér,et al.  Extended univariate algorithms for n-dimensional global optimization , 1986, Computing.

[25]  Regina Hunter Mladineo An algorithm for finding the global maximum of a multimodal, multivariate function , 1986, Math. Program..

[26]  János D. Pintér,et al.  Globally convergent methods for n-dimensional multiextremal optimization , 1986 .

[27]  Panos M. Pardalos,et al.  Parallel Processing of Discrete Problems , 1999 .

[28]  Julius Žilinskas,et al.  Template realization of generalized branch and bound algorithm , 2005 .

[29]  Graham R. Wood,et al.  Multidimensional bisection: The performance and the context , 1993, J. Glob. Optim..

[30]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[31]  K. Grasse,et al.  A general class of branch-and-bound methods in global optimization with some new approaches for concave minimization , 1986 .

[32]  Efim A. Galperin,et al.  The cubic algorithm , 1985 .

[33]  Tibor Csendes,et al.  Generalized Subinterval Selection Criteria for Interval Global Optimization , 2004, Numerical Algorithms.

[34]  Brigitte Jaumard,et al.  An On-Line Cone Intersection Algorithm for Global Optimization of Multivariate Lipschitz Functions , 1995 .

[35]  Remigijus Paulavičius,et al.  Global optimization using the branch‐and‐bound algorithm with a combination of Lipschitz bounds over simplices , 2009 .

[36]  Panos M. Pardalos,et al.  Parallel computing in global optimization , 2006 .

[37]  A. Zilinskas,et al.  Global optimization based on a statistical model and simplicial partitioning , 2002 .

[38]  G. R. Wood,et al.  Multidimensional bisection applied to global optimisation , 1991 .

[39]  J. Pintér Branch- and bound algorithms for solving global optimization problems with Lipschitzian structure , 1988 .