Canards and mixed-mode oscillations in a forest pest model.

We consider a three-variable forest pest model, proposed by Rinaldi & Muratori (1992) [Rinaldi, S., Muratori, S., 1992. Limit cycles in slow-fast forest-pest models. Theor. Popul. Biol. 41, 26-43]. The model allows relaxation oscillations where long pest-free periods are interspersed with outbreaks of high pest concentration. For small values of the timescale of the young trees, the model can be reduced to a two-dimensional model. By a geometrical analysis we identify a canard explosion in the reduced model, that is, a change over a narrow parameter interval from outbreak dynamics to small oscillations around an endemic state. For larger values of the timescale of the young trees the two-dimensional approximation breaks down, and a broader parameter interval with mixed-mode oscillations appear, replacing the simple canard explosion. The analysis only relies on simple and generic properties of the model, and is expected to be applicable in a larger class of multiple timescale dynamical models.

[1]  J. Callot,et al.  Chasse au canard , 1977 .

[2]  Bo Deng,et al.  Food chain chaos with canard explosion. , 2004, Chaos.

[3]  Stefan Schuster,et al.  BIFURCATION ANALYSIS OF CALCIUM OSCILLATIONS: TIME-SCALE SEPARATION, CANARDS, AND FREQUENCY LOWERING , 2001 .

[4]  V. Sobolev,et al.  Canard doublet in a Lotka-Volterra type model , 2008 .

[5]  D. Gray The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada , 2008 .

[6]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[7]  J. Carr Applications of Centre Manifold Theory , 1981 .

[8]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[9]  S. Rinaldi,et al.  Acidic deposition, plant pests, and the fate of forest ecosystems. , 1998, Theoretical population biology.

[10]  Sergio Rinaldi,et al.  Limit cycles in slow-fast forest-pest models☆ , 1992 .

[11]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[12]  C. S. Holling,et al.  Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest , 1978 .

[13]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[14]  Alois Klíc,et al.  Canard solutions and travelling waves in the spruce budworm population model , 2006, Appl. Math. Comput..

[15]  Jeff Moehlis,et al.  Canards for a reduction of the Hodgkin-Huxley equations , 2006, Journal of mathematical biology.

[16]  J. Sturis,et al.  Local and global bifurcations at infinity in models of glycolytic oscillations , 1997, Journal of mathematical biology.

[17]  J. Régnière,et al.  Assessing the Impacts of Global Warming on Forest Pest Dynamics , 2022 .

[18]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[19]  Sergio Rinaldi,et al.  Catastrophic bifurcations in a second-order dynamical system with application to acid rain and forest collapse , 1989 .

[20]  Richard A. Fleming,et al.  Forest-pest interaction dynamics: the simplest mathematical models. , 1990 .

[21]  L. Ginzburg,et al.  Population cycles of forest Lepidoptera: a maternal effect hypothesis , 1994 .

[22]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[23]  A. Wolf,et al.  Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate , 2008 .

[24]  N. Stenseth,et al.  Natural regulation of herbivorous forest insect populations , 2004, Oecologia.

[25]  Morten Brøns Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperatures , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  L Glass,et al.  Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.