Trend tests for the evaluation of exposure-response relationships in epidemiological exposure studies
暂无分享,去创建一个
[1] Kazuo Anraku,et al. An information criterion for parameters under a simple order restriction , 1999 .
[2] Ludwig A. Hothorn,et al. Trend Tests for Dichotomous Endpoints with Application to Carcinogenicity Studies , 1997 .
[3] Y. Nishiwaki,et al. Lack of Relationship between Occupational Exposure to Carbon Disulfide and Endocrine Dysfunction: A Six‐year Cohort Study of the Japanese Rayon Workers , 2003, Journal of occupational health.
[4] M. Pike,et al. Problems involved in including women with simple hysterectomy in epidemiologic studies measuring the effects of hormone replacement therapy on breast cancer risk. , 1998, American journal of epidemiology.
[5] W. Härdle,et al. Does male age affect the risk of spontaneous abortion? An approach using semiparametric regression. , 2003, American journal of epidemiology.
[6] Chihiro Hirotsu,et al. Use of cumulative efficient scores for testing ordered alternatives in discrete models , 1982 .
[7] E. A. Cheeseman. Principles of Medical Statistics, 9th edition , 1972 .
[8] D. A. Williams,et al. The comparison of several dose levels with a zero dose control. , 1972, Biometrics.
[9] W. Schull,et al. Cataract in atomic bomb survivors based on a threshold model and the occurrence of severe epilation. , 1996, Radiation research.
[10] S. Greenland. A meta-analysis of coffee, myocardial infarction, and coronary death. , 1993, Epidemiology.
[11] P. Rosenbaum. Does a dose-response relationship reduce sensitivity to hidden bias? , 2003, Biostatistics.
[12] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[13] T. Raghunathan,et al. Caffeine Intake in Relation to the Risk of Primary Cardiac Arrest , 1997, Epidemiology.
[14] S. Peddada,et al. Tests for Order Restrictions in Binary Data , 2001, Biometrics.
[15] W J Schull,et al. Threshold for radiation-related severe mental retardation in prenatally exposed A-bomb survivors: a re-analysis. , 1996, International journal of radiation biology.
[16] Williams Da,et al. The comparison of several dose levels with a zero dose control. , 1972 .
[17] J Benichou,et al. A comparison of several methods to test for the existence of a monotonic dose–response relationship in clinical and epidemiological studies , 2001, Statistics in medicine.
[18] D. Waltner-Toews,et al. Exposure assessment in investigations of waterborne illness: a quantitative estimate of measurement error , 2006, Epidemiologic perspectives & innovations : EP+I.
[19] C. Holmes,et al. Generalized monotonic regression using random change points , 2003, Statistics in medicine.
[20] A. Andersen,et al. Exposure to different forms of nickel and risk of lung cancer. , 2002, American journal of epidemiology.
[21] Adolfo Figueiras,et al. Exposure to residential radon and lung cancer in Spain: a population-based case-control study. , 2002, American journal of epidemiology.
[22] Chihiro Hirotsu,et al. Changepoint Analysis as a Method for Isotonic Inference , 2002 .
[23] Alvan R. Feinstein,et al. Principles of Medical Statistics , 2001 .
[24] The penalty for assuming that a monotone regression is linear , 1987 .
[25] M. Schell,et al. The Reduced Monotonic Regression Method , 1997 .
[26] Ludwig A. Hothorn,et al. An exact Cochran-Armitage test for trend when dose-response shapes are a priori unknown , 1999 .
[27] J. Benichou,et al. An alternative test for trend in exposure-response analysis. , 1998, Journal of exposure analysis and environmental epidemiology.
[28] Frank Bretz,et al. Evaluation of Animal Carcinogenicity Studies: Cochran‐Armitage Trend Test vs. Multiple Contrast Tests , 2000 .
[29] Berthold Lausen,et al. Maximally Selected Rank Statistics for Dose-Response Problems , 2002 .
[30] S. Heymsfield,et al. Epidemiology of sarcopenia among the elderly in New Mexico. , 1998, American journal of epidemiology.
[31] C. Xiong,et al. On detecting change in likelihood ratio ordering , 2002 .
[32] F. T. Wright,et al. Order restricted statistical inference , 1988 .
[33] L. Hothorn,et al. Approximate Simultaneous Confidence Intervals for Multiple Contrasts of Binomial Proportions , 2008, Biometrical journal. Biometrische Zeitschrift.
[34] Georgia Salanti,et al. Tests for Trend in Binary Response , 2003 .
[35] J. Olsen,et al. Residence near high voltage facilities and risk of cancer in children. , 1993, BMJ.
[36] T. Hothorn,et al. Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.
[37] F. Flamigni,et al. Dose‐dependent suppression of serum prolactin by cabergoline in hyperprolactinaemia: a placebo controlled, double blind, multicentre study , 1992, Clinical endocrinology.
[38] Roberto Pastor-Barriuso,et al. Transition models for change‐point estimation in logistic regression , 2003, Statistics in medicine.
[39] S. Ruberg,et al. Detecting dose response with contrasts. , 2000, Statistics in medicine.
[40] Anthony J. Hayter,et al. Multiple comparison procedures based on the maximal component of the cumulative chi-squared statistic , 1992 .
[41] Ludwig A Hothorn,et al. Multiple Comparisons and Multiple Contrasts in Randomized Dose-Response Trials—Confidence Interval Oriented Approaches , 2006, Journal of biopharmaceutical statistics.
[42] Frank Bretz,et al. Statistical Analysis of Monotone or Non-monotone Dose–Response Data from In Vitro Toxicological Assays , 2003, Alternatives to laboratory animals : ATLA.
[43] S. de Sanjosé,et al. Regular use of hair dyes and risk of lymphoma in Spain. , 2005, International journal of epidemiology.
[44] A. Agresti,et al. The analysis of contingency tables under inequality constraints , 2002 .
[45] Keith J. Worsley,et al. On the Likelihood Ratio Test for a Shift in Location of Normal Populations , 1979 .
[46] H. Akaike. A new look at the statistical model identification , 1974 .
[47] A. B. Hill,et al. Principles of Medical Statistics , 1950, The Indian Medical Gazette.
[48] Limin Peng,et al. Model selection under order restriction , 2002 .
[49] Frank Bretz,et al. On Multiple Comparisons in R ∗ , 2004 .
[50] M. Thun,et al. Coffee consumption, gender, and Parkinson's disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen. , 2004, American journal of epidemiology.
[51] P Royston,et al. The use of fractional polynomials to model continuous risk variables in epidemiology. , 1999, International journal of epidemiology.
[52] S Greenland,et al. Avoiding power loss associated with categorization and ordinal scores in dose-response and trend analysis. , 1995, Epidemiology.
[53] Tarone Re,et al. The relation between score tests and approximate UMPU tests in exponential models common in biometry. , 1983 .
[54] Chihiro Hirotsu,et al. Simultaneous confidence intervals based on one-sided max t test , 2000 .
[55] Frank Bretz,et al. Detecting dose–response using contrasts: asymptotic power and sample size determination for binomial data , 2002, Statistics in medicine.
[56] C. Redmond,et al. Occupationally Related Cancer Risk Among Coke Oven Workers: 30 Years of Follow-Up , 1995, Journal of occupational and environmental medicine.
[57] D. Weed,et al. The practice of causal inference in cancer epidemiology. , 1996, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.
[58] J. Benichou,et al. Tests for Monotonic Trend from Case‐Control Data: Cochran‐Armitage‐Mantel Trend Test, Isotonic Regression and Single and Multiple Contrast Tests , 2004 .