Bell Length as Mutual Information in Quantum Interference

The necessity of a rigorously operative formulation of quantum mechanics, functional to the exigencies of quantum computing, has raised the interest again in the nature of probability and the inference in quantum mechanics. In this work, we show a relation among the probabilities of a quantum system in terms of information of non-local correlation by means of a new quantity, the Bell length.

[1]  D. Fiscaletti Towards a Geometrodynamic Entropic Approach to Quantum Entanglement and the Perspectives on Quantum Computing , 2013 .

[2]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[3]  Valery I. Sbitnev,et al.  Bohmian Trajectories and the Path Integral Paradigm: complexified Lagrangian mechanics , 2008, Int. J. Bifurc. Chaos.

[4]  Leonardo Chiatti,et al.  Wave Function Structure and Transactional Interpretation , 1994 .

[5]  Davide Fiscaletti,et al.  Quantum Potential: Physics, Geometry and Algebra , 2013 .

[6]  Germano Resconi,et al.  Unification of Quantum and Gravity by Non Classical Information Entropy Space , 2013, Entropy.

[7]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[8]  L. Chiatti Path integral and transactional interpretation , 1995 .

[9]  G. Compagno,et al.  Non-locality and causal evolution in QFT , 2006, quant-ph/0602221.

[10]  Adam Miranowicz,et al.  Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality , 2013, 1301.2969.

[11]  BOHM TRAJECTORIES AND FEYNMAN PATHS IN LIGHT OF QUANTUM ENTROPY , 2014 .

[12]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[13]  Michael J. W. Hall Correlation Distance and Bounds for Mutual Information , 2013, Entropy.

[14]  Weyl Geometries, Fisher Information and Quantum Entropy in Quantum Mechanics , 2012 .

[15]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[16]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[17]  T. Fritz,et al.  Entropic approach to local realism and noncontextuality , 2012, 1201.3340.

[18]  Hans Christian von Baeyer,et al.  Quantum weirdness? It's all in your mind. , 2013, Scientific American.

[19]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[20]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[21]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[22]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[23]  M. Novello,et al.  ON A GEOMETRICAL DESCRIPTION OF QUANTUM MECHANICS , 2009, 0901.3741.