An approach to integrating numerical and response surface models for robust design of production systems

.............................................................................................................................. ii Acknowledgments................................................................................................................v Vita ................................................................................................................................ vi List of Tables ................................................................................................................... xiii List of Figures ....................................................................................................................xv Chapters

[1]  Aleksandrs Korjakins,et al.  Surrogate Models for Optimum Design of Stiffened Composite Shells , 2004 .

[2]  Tomas Jansson,et al.  Using the response surface methodology and the D-optimality criterion in crashworthiness related problems , 2002 .

[3]  Chih-Chou Chiu,et al.  Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters , 1998 .

[4]  S. G. Deshmukh,et al.  A genetic algorithmic approach for optimization of surface roughness prediction model , 2002 .

[5]  Ramana V. Grandhi,et al.  Optimum design of the heat-transfer coefficient during gas quenching using the response surface method , 2002 .

[6]  Raphael T. Haftka,et al.  Response surface approximations for structural optimization , 1996 .

[7]  George E. P. Box,et al.  QUALITY PRACTICES IN JAPAN. , 1988 .

[8]  Chih-Chou Chiu,et al.  Identification of process disturbance using SPC/EPC and neural networks , 2003, J. Intell. Manuf..

[9]  J. P. Yang,et al.  Quality based design approach for a single crystal silicon microactuator using DOE technique and response surface model , 2002 .

[10]  Andrzej Służalec,et al.  Simulation of stochastic metal-forming process for rigid-viscoplastic material , 2000 .

[11]  Dimitri N. Mavris,et al.  Multi-Level, Partitioned Response Surfaces for Modeling Complex Systems , 1998 .

[12]  Fugee Tsung,et al.  IMPROVING AUTOMATIC-CONTROLLED PROCESS QUALITY USING ADAPTIVE PRINCIPAL COMPONENT MONITORING , 1999 .

[13]  Bernt J. Leira,et al.  Reliability-based analysis of a stretch-bending process for aluminium extrusions , 1999 .

[14]  Shiro Kobayashi,et al.  A review on the finite-element method and metal forming process modeling , 1982 .

[15]  T. Sheppard,et al.  Lateral spread during slab rolling , 1989 .

[16]  P. H Waarts,et al.  Stochastic finite element analysis of steel structures , 1999 .

[17]  S. Kobayashi,et al.  Metal Forming and the Finite Element Method — Past and Future , 1985 .

[18]  L. N. Harris,et al.  Taguchi techniques for quality engineering, Philip J. Ross, Mcgraw-hill book company, 1988 , 1989 .

[19]  T. Shinokura,et al.  A new method for calculating spread in rod rolling , 1982 .

[20]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[21]  Ruey-Shiang Guh,et al.  Integrating artificial intelligence into on‐line statistical process control , 2003 .

[22]  L. Watson,et al.  Reasonable Design Space Approach to Response Surface Approximation , 1999 .

[23]  Qiang Huang,et al.  Diagnosis of multi-operational machining processes through variation propagation analysis , 2002 .

[24]  Shiro Kobayashi,et al.  Metal forming and the finite-element method , 1989 .

[25]  Ramana V. Grandhi,et al.  Two-level optimization of airframe structures using response surface approximation , 2000 .

[26]  Shinji Wakao,et al.  Design optimization of a permanent magnet synchronous motor by the response surface methodology , 2002 .

[27]  Harold Thomas Optimization of structures designed using nonlinear FEM analysis , 1996 .

[28]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[29]  Kwei Tang,et al.  Performance comparison between on-line sensors and control charts Performance comparison between on-line sensors and control charts in manufacturing process monitoring , 1999 .

[30]  J. D. T. Tannock,et al.  A neural network approach to characterize pattern parameters in process control charts , 1999, J. Intell. Manuf..

[31]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[32]  V. Gunaraj,et al.  Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes , 1999 .

[33]  Victor Vazquez,et al.  Numerical process simulation for tool and process design in bulk metal forming , 1996 .

[34]  Srinivas Kodiyalam,et al.  Design of Experiments based response surface models for design optimization , 1998 .

[35]  Larsgunnar Nilsson,et al.  Optimization of a car body component subjected to side impact , 2001 .

[36]  Terry Sheppard,et al.  Parameters affecting lateral deformation in slabbing mills , 1981 .

[37]  Soo-Ik Oh,et al.  Cylindrical tube optimization using response surface method based on stochastic process , 2002 .

[38]  Hefin Rowlands,et al.  An approach of fuzzy logic evaluation and control in SPC , 2000 .

[39]  Hoon Huh,et al.  Process Parameter Design in Sheet Stamping Processes with Rigid-plastic Finite Element Analysis , 2000 .

[40]  Maurice Lemaire,et al.  Combination of finite element and reliability methods in nonlinear fracture mechanics , 2000, Reliab. Eng. Syst. Saf..

[41]  G. A. Gabriele,et al.  Multidisciplinary analysis and optimization of discrete problems using response surface methods , 1995, DAC 1995.

[42]  G. Perotti,et al.  Roll Pass Design for Round Bars , 1990 .

[43]  W. K. Rule,et al.  A Response Surface for Structural Optimization , 1997 .

[44]  Ranjan Ganguli,et al.  OPTIMUM DESIGN OF A HELICOPTER ROTOR FOR LOW VIBRATION USING AEROELASTIC ANALYSIS AND RESPONSE SURFACE METHODS , 2002 .