Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal–plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials.

[1]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[2]  Martin AA Schoonen,et al.  Moving Geochemical Transactions forward as an open access journal , 2006, Geochemical Transactions.

[3]  P. M. Anderson Theory of dislocations , 1953 .

[4]  N. Kelly,et al.  Zircon Behaviour and the Thermal Histories of Mountain Chains , 2007 .

[5]  E. Krogstad,et al.  Interpretation of discordant U‐Pb zircon ages: An evaluation , 1997 .

[6]  E. W. Hart On the role of dislocations in bulk diffusion , 1957 .

[7]  S. Harley A pyroxene‐bearing meta‐ironstone and other pyroxene‐granulites from Tonagh Island, Enderby Land, Antarctica: further evidence for very high temperature (> 980°C) Archaean regional metamorphism in the Napier Complex , 1987 .

[8]  N. Kelly,et al.  An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica , 2005 .

[9]  D. Jacob,et al.  Minor and trace elements in olivines as probes into early igneous and mantle melting processes , 2013 .

[10]  C. Shen,et al.  Nucleation of ordered particles at dislocations and formation of split patterns , 2007 .

[11]  P. Zeitler,et al.  Comparison of clastic wedge provenance in the Appalachian foreland using U/Pb ages of detrital zircons , 1997 .

[12]  Simon A. Wilde,et al.  Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography , 2014 .

[13]  M. Kusiak,et al.  Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology , 2013 .

[14]  G. Hirth,et al.  The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size , 2015 .

[15]  S. Piazolo,et al.  Brittle-ductile microfabrics in naturally deformed zircon: Deformation mechanisms and consequences for U-Pb dating , 2012 .

[16]  S. Harley Garnet-Orthopyroxene Bearing Granulites from Enderby Land, Antarctica: Metamorphic Pressure Temperature-Time Evolution of the Archaean Napier Complex , 1985 .

[17]  A. Yamaguchi,et al.  SHRIMP and electron microprobe chronology of UHT metamorphism in the Napier Complex, East Antarctica: implications for zircon growth at >1,000 °C , 2004 .

[18]  R. C. Picu,et al.  Atomistic study of pipe diffusion in Al–Mg alloys , 2004 .

[19]  D. Larson,et al.  Presidential Address. Nano- and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: New tools for old minerals , 2015 .

[20]  Simon P. Ringer,et al.  Strengthening from Nb-rich clusters in a Nb-microalloyed steel , 2012 .

[21]  I. Bernstein,et al.  Dislocation transport of hydrogen in iron single crystals , 1986 .

[22]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[23]  D. Cherniak,et al.  Diffusion in Zircon , 2003 .

[24]  T. Hokada Letter. Feldspar thermometry in ultrahigh-temperature metamorphic rocks: Evidence of crustal metamorphism attaining ~1100 °C in the Archean Napier Complex, East Antarctica , 2001 .

[25]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[26]  P. Trimby,et al.  Quantitative characterization of plastic deformation of zircon and geological implications , 2007 .

[27]  W. Compston,et al.  Two Carboniferous Ages: A Comparison of Shrimp Zircon Dating with Conventional Zircon Ages and 40Ar/39Ar Analysis , 1995 .

[28]  G. Love,et al.  Dislocation pipe diffusion , 1964 .

[29]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[30]  S. Reddy,et al.  Enhanced diffusion of Uranium and Thorium linked to crystal plasticity in zircon , 2006, Geochemical transactions.

[31]  R. Kirk,et al.  Observation of Giant Diffusivity Along Dislocation Cores , 2008, Science.

[32]  P. Trimby,et al.  Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. , 2012, Ultramicroscopy.

[33]  J. Gerald,et al.  The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe , 1994 .

[34]  T. Dempster,et al.  Zircon Behaviour during Low-temperature Metamorphism , 2009 .

[35]  T. Geisler Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process , 2002 .

[36]  David J. Larson,et al.  Local Electrode Atom Probe Tomography: A User's Guide , 2013 .

[37]  M. Rosing,et al.  Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago , 2012, Nature.

[38]  W. Compston,et al.  Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages , 1984 .

[39]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[40]  T. Ireland,et al.  High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations , 2012 .

[41]  C. Simpson,et al.  Zircon U–Pb dating of Early Palaeozoic monzonitic intrusives from the Goonumbla area, New South Wales , 2001 .

[42]  P. Heitjans,et al.  Diffusion in Condensed Matter , 2005 .

[43]  A. Ruoff,et al.  Strain‐Enhanced Diffusion in Metals. II. Dislocation and Grain‐Boundary Short‐Circuiting Models , 1963 .

[44]  P. Heitjans,et al.  Diffusion in Condensed Matter: Methods, Materials, Models , 2012 .

[45]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[46]  S. Piazolo,et al.  Ultrahigh temperature deformation microstructures in felsic granulites of the Napier Complex, Antarctica , 2006 .

[47]  L. P. Black,et al.  A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies , 1997, Antarctic Science.