Genetics of familial and sporadic amyotrophic lateral sclerosis.

Diseases affecting motor neurons, such as amyotrophic lateral sclerosis (Lou Gerhig's disease), hereditary spastic paraplegia and spinal bulbar muscular atrophy (Kennedy's disease) are a heterogeneous group of chronic progressive diseases and are among the most puzzling yet untreatable illnesses. Over the last decade, identification of mutations in genes predisposing to these disorders has provided the means to better understand their pathogenesis. The discovery 13 years ago of SOD1 mutations linked to ALS, which account for less than 2% of total cases, had a major impact in the field. However, despite intensive research effort, the pathways leading to the specific motor neurons degeneration in the presence of SOD1 mutations have not been fully identified. This review provides an overview of the genetics of both familial and sporadic forms of ALS.

[1]  Richard D Fetter,et al.  Dynactin Is Necessary for Synapse Stabilization , 2002, Neuron.

[2]  Y. Nishimura,et al.  Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins. , 1999, Biochemical and biophysical research communications.

[3]  A Al-Chalabi,et al.  Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. , 1999, Human molecular genetics.

[4]  C. Lewis,et al.  Screening of the regulatory and coding regions of vascular endothelial growth factor in amyotrophic lateral sclerosis , 2005, Neurogenetics.

[5]  V. Drory,et al.  Association of APOE ε4 allele with survival in amyotrophic lateral sclerosis , 2001, Journal of the Neurological Sciences.

[6]  L. H. van den Berg,et al.  SMN genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS , 2005, Neurology.

[7]  D. Borchelt,et al.  Fibrillar Inclusions and Motor Neuron Degeneration in Transgenic Mice Expressing Superoxide Dismutase 1 with a Disrupted Copper-Binding Site , 2002, Neurobiology of Disease.

[8]  P. Nunn,et al.  MOTORNEURONE DISEASE ON GUAM: POSSIBLE ROLE OF A FOOD NEUROTOXIN , 1986, The Lancet.

[9]  C. Waterman-Storer,et al.  The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Beal,et al.  Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury , 1996, Nature Genetics.

[11]  V. Meininger,et al.  Absence of mutations in the hypoxia response element of VEGF in ALS , 2003, Muscle & nerve.

[12]  S. Shimohama,et al.  Genetic variation in the ciliary neurotrophic factor receptor α gene and familial amyotrophic lateral sclerosis , 1998 .

[13]  J. Schulz,et al.  Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2 , 2004, Nature Genetics.

[14]  M. C. Ellis,et al.  A novel MHC class I–like gene is mutated in patients with hereditary haemochromatosis , 1996, Nature Genetics.

[15]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[16]  F. Gros,et al.  Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat , 1990, Journal of Neuroscience.

[17]  V. Meininger,et al.  Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients , 2002, Journal of the Neurological Sciences.

[18]  Claire L. Simpson,et al.  Variants in the ALS2 gene are not associated with sporadic amyotrophic lateral sclerosis , 2003, Neurogenetics.

[19]  J. Haines,et al.  Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. , 2000, JAMA.

[20]  B. Schrank,et al.  Potential implications of a ciliary neurotrophic factor gene mutation in a german population of patients with motor neuron disease , 1998 .

[21]  A. Ludolph,et al.  Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS , 2004, Neurology.

[22]  B. Müller-Myhsok,et al.  Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. , 2002, American journal of human genetics.

[23]  Jean-Pierre Julien,et al.  Functions of intermediate filaments in neuronal development and disease. , 2004, Journal of neurobiology.

[24]  E. Bertini,et al.  Unstable mutants in the peripheral endosomal membrane component ALS2 cause early-onset motor neuron disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Pramatarova,et al.  Neuron-Specific Expression of Mutant Superoxide Dismutase 1 in Transgenic Mice Does Not Lead to Motor Impairment , 2001, The Journal of Neuroscience.

[26]  K. Fischbeck,et al.  A gene for autosomal dominant juvenile amyotrophic lateral sclerosis (ALS4 ) localizes to a 500-kb interval on chromosome 9q34 , 2000, Neurogenetics.

[27]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[28]  N. Hirokawa Microtubule organization and dynamics dependent on microtubule-associated proteins. , 1994, Current opinion in cell biology.

[29]  Till Acker,et al.  Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration , 2001, Nature Genetics.

[30]  P. Carmeliet,et al.  VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death , 2003, Nature Genetics.

[31]  J. McPherson,et al.  A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. , 1999, Human molecular genetics.

[32]  O. Hardiman,et al.  Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS , 2005, Neurology.

[33]  R. Swingler,et al.  Identification of a novel SOD1 mutation in an apparently sporadic amyotrophic lateral sclerosis patient and the detection of Ile113Thr in three others. , 1994, Human molecular genetics.

[34]  L. Lannfelt,et al.  No evidence of linkage to chromosome 9q21–22 in a Swedish family with frontotemporal dementia and amyotrophic lateral sclerosis , 2003, Neuroscience Letters.

[35]  R. Oppenheim,et al.  Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. , 1991, Science.

[36]  P. Hiesinger,et al.  Drosophila VAP-33A Directs Bouton Formation at Neuromuscular Junctions in a Dosage-Dependent Manner , 2002, Neuron.

[37]  J. Julien,et al.  Late Onset Death of Motor Neurons in Mice Overexpressing Wild-Type Peripherin , 1999, The Journal of cell biology.

[38]  C. van Broeckhoven,et al.  Further evidence that neurofilament light chain gene mutations can cause Charcot‐Marie‐Tooth disease type 2E , 2001, Annals of neurology.

[39]  K. Marder,et al.  Clinical characteristics of a family with chromosome 17‐linked disinhibition‐dementia‐ parkinsonism‐amyotrophy complex , 1994, Neurology.

[40]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[41]  A. Richieri‐Costa,et al.  Autosomal dominant late adult spinal muscular atrophy, type Finkel. , 1981, American journal of medical genetics.

[42]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[43]  S. Appel,et al.  HFE mutations are not strongly associated with sporadic ALS , 2004, Neurology.

[44]  V. Meininger,et al.  Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. , 1995, American journal of human genetics.

[45]  C. Andres,et al.  SMN1 gene study in three families in which ALS and spinal muscular atrophy co-exist , 2002, Neurology.

[46]  M. Kirschner,et al.  The primary structure and heterogeneity of tau protein from mouse brain. , 1988, Science.

[47]  S. Isomura,et al.  Letter: Contact infection from live varicella vaccine recipients. , 1976, Lancet.

[48]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[49]  A. Malafosse,et al.  Apolipoprotein E genotyping in sporadic amyotrophic lateral sclerosis: evidence for a major influence on the clinical presentation and prognosis , 1996, Journal of the Neurological Sciences.

[50]  A. Al-Chalabi,et al.  Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: Homozygous naip deletion in a sporadic case , 1996, Annals of neurology.

[51]  F. Baas,et al.  Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS , 2001, Neurology.

[52]  C. Shaw,et al.  ALS2/Alsin Regulates Rac-PAK Signaling and Neurite Outgrowth* , 2005, Journal of Biological Chemistry.

[53]  G. Rouleau,et al.  Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family , 2001, Annals of neurology.

[54]  R. Chisholm,et al.  A type III intermediate filament gene is expressed in mature neurons , 1988, Neuron.

[55]  A. Ludolph,et al.  The EAAT2 (GLT-1) gene in motor neuron disease: absence of mutations in amyotrophic lateral sclerosis and a point mutation in patients with hereditary spastic paraplegia , 1998, Journal of neurology, neurosurgery, and psychiatry.

[56]  N. Laing,et al.  "Sporadic" motoneuron disease due to familial SOD1 mutation with low penetrance , 1994, The Lancet.

[57]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[58]  W. Longstreth, Jr.,et al.  Physical Trauma and Family History of Neurodegenerative Diseases in Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study , 1999, Neuroepidemiology.

[59]  C. Lorson,et al.  A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Zatz,et al.  A novel locus for late onset amyotrophic lateral sclerosis/motor neurone disease variant at 20q13 , 2004, Journal of Medical Genetics.

[61]  G. Buettner,et al.  Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. , 1999, Free radical biology & medicine.

[62]  D. Geschwind,et al.  Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Kassubek,et al.  Novel mutation in the ALS2 gene in juvenile amyotrophic lateral sclerosis , 2005, Annals of neurology.

[64]  K. Roemer,et al.  Chromosomal translocation t(18;21)(q23;q22.1) indicates novel susceptibility loci for frontotemporal dementia with ALS , 2004, Annals of neurology.

[65]  C. Broeckhoven,et al.  The role of tau (MAPT) in frontotemporal dementia and related tauopathies , 2004, Human mutation.

[66]  M. Pericak-Vance,et al.  Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers , 1998, Neurogenetics.

[67]  K. Kaneko,et al.  Cytogenetic analysis of 23 Japanese patients with amyotrophic lateral sclerosis , 1995, Clinical genetics.

[68]  M. Hayden,et al.  An ALS2 gene mutation causes hereditary spastic paraplegia in a Pakistani kindred , 2003, Annals of neurology.

[69]  H. Horvitz,et al.  A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[70]  L. Foster,et al.  A Functional Role for VAP‐33 in Insulin‐Stimulated GLUT4 Traffic , 2000, Traffic.

[71]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[72]  G. Schellenberg,et al.  TAU as a susceptibility gene for amyotropic lateral sclerosis-parkinsonism dementia complex of Guam. , 2001, Archives of neurology.

[73]  Robert H. Brown,et al.  Ciliary neurotrophic factor genotype does not influence clinical phenotype in amyotrophic lateral sclerosis , 2003, Annals of neurology.

[74]  J. Melki,et al.  Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model. , 2002, Human molecular genetics.

[75]  C. Lewis,et al.  Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. , 2003, American journal of human genetics.

[76]  Shuh Narumiya,et al.  ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. , 2003, Human molecular genetics.

[77]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[78]  J. Haines,et al.  Genetic mapping of a mouse modifier gene that can prevent ALS onset. , 2000, Genomics.

[79]  V. Meininger,et al.  APOE: A potential marker of disease progression in ALS , 2002, Neurology.

[80]  O. Evgrafov,et al.  A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. , 2000, American journal of human genetics.

[81]  Sanford P. Markey,et al.  2‐Amino‐3‐(methylamino)‐propanoic acid (BMAA) in cycad flour , 1990, Neurology.

[82]  P. Harte,et al.  Analysis of visual system development in Drosophila melanogaster: mutations at the Glued locus. , 1983, Developmental biology.

[83]  L. H. van den Berg,et al.  Physical activity and the association with sporadic ALS , 2005, Neurology.

[84]  D. Borchelt,et al.  Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. , 2003, Human molecular genetics.

[85]  K. Roemer,et al.  High rate of constitutional chromosomal rearrangements in apparently sporadic ALS , 2003, Neurology.

[86]  A. Guberman,et al.  Cerebral lesions in familial amyotrophic lateral sclerosis and dementia , 1973, Acta Neuropathologica.

[87]  J. Julien,et al.  A neurotoxic peripherin splice variant in a mouse model of ALS , 2003, The Journal of cell biology.

[88]  Asako Otomo,et al.  Homo-oligomerization of ALS2 through Its Unique Carboxyl-terminal Regions Is Essential for the ALS2-associated Rab5 Guanine Nucleotide Exchange Activity and Its Regulatory Function on Endosome Trafficking* , 2004, Journal of Biological Chemistry.

[89]  W. Bradley,et al.  Amyotrophc Lateral Sclerosis: Part 1. Clinical Features, Pathology, and E h c d Issues in Management* , 2004 .

[90]  P N Leigh,et al.  Recent advances in amyotrophic lateral sclerosis , 2000, Current opinion in neurology.

[91]  K. Kosik,et al.  Structure and novel exons of the human tau gene. , 1992, Biochemistry.

[92]  P. Andersen,et al.  Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. , 1996, Brain : a journal of neurology.

[93]  J. Habgood,et al.  Difficulties in distinguishing sporadic from familial amyotrophic lateral sclerosis , 1996, Annals of neurology.

[94]  T. Wienker,et al.  Mutations in the gene encoding immunoglobulin μ-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1 , 2001, Nature Genetics.

[95]  Bin Zhang,et al.  Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform , 1999, Neuron.

[96]  V. Meininger,et al.  Deletions causing spinal muscular atrophy do not predispose to amyotrophic lateral sclerosis. , 1999, Archives of neurology.

[97]  I. Nishimoto,et al.  Alsin, the Product of ALS2 Gene, Suppresses SOD1 Mutant Neurotoxicity through RhoGEF Domain by Interacting with SOD1 Mutants* , 2004, Journal of Biological Chemistry.

[98]  J. Haines,et al.  Apolipoprotein E is associated with age at onset of amyotrophic lateral sclerosis , 2004, Neurogenetics.

[99]  J. Julien,et al.  Delayed Maturation of Regenerating Myelinated Axons in Mice Lacking Neurofilaments , 1997, Experimental Neurology.

[100]  Hung Li,et al.  A mouse model for spinal muscular atrophy , 2000, Nature Genetics.

[101]  D. Howland,et al.  Disruption of Dynein/Dynactin Inhibits Axonal Transport in Motor Neurons Causing Late-Onset Progressive Degeneration , 2002, Neuron.

[102]  T. Deguchi,et al.  Erratum: A null mutation in the human CNTF gene is not causally related to neurological diseases , 1994, Nature Genetics.

[103]  P. Carmeliet,et al.  Molecular Basis of Angiogenesis: Role of VEGF and VE‐Cadherin , 2000, Annals of the New York Academy of Sciences.

[104]  Koji Abe,et al.  Single-nucleotide polymorphisms in uncoding regions of ALS2 gene of Japanese patients with autosomal-recessive amyotrophic lateral sclerosis , 2003, Neurological research.

[105]  J. Rothstein,et al.  Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[106]  B. Hyman,et al.  Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function , 2005, Science.

[107]  John Mitchell,et al.  A new familial amyotrophic lateral sclerosis locus on chromosome 16q12.1-16q12.2. , 2003, American journal of human genetics.

[108]  Y. Itoyama,et al.  Mild ALS in Japan associated with novel SOD mutation , 1993, Nature Genetics.

[109]  Noah W. Gray,et al.  Alsin Is a Rab5 and Rac1 Guanine Nucleotide Exchange Factor* , 2004, Journal of Biological Chemistry.

[110]  G. Belle,et al.  Occupational exposures and amyotrophic lateral sclerosis. A population-based case-control study. , 1997, American journal of epidemiology.

[111]  K. Morrison,et al.  Polymorphisms in the glutamate transporter gene EAAT2 in European ALS patients , 1999, Journal of Neurology.

[112]  J. Haines,et al.  Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. , 2003, American journal of human genetics.

[113]  W. Longstreth,et al.  Population-based case-control study of amyotrophic lateral sclerosis in western Washington State. I. Cigarette smoking and alcohol consumption. , 2000, American journal of epidemiology.

[114]  J. Shefner,et al.  Association of Cigarette Smoking with Amyotrophic Lateral Sclerosis , 1999, Neuroepidemiology.

[115]  Robert H. Brown,et al.  Rats Expressing Human Cytosolic Copper–Zinc Superoxide Dismutase Transgenes with Amyotrophic Lateral Sclerosis: Associated Mutations Develop Motor Neuron Disease , 2001, The Journal of Neuroscience.

[116]  M. Thun,et al.  Prospective study of cigarette smoking and amyotrophic lateral sclerosis. , 2004, American journal of epidemiology.

[117]  C. Hayward,et al.  Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis , 1999, Neurology.

[118]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[119]  P. Andersen,et al.  Variants in candidate ALS modifier genes linked to Cu/Zn superoxide dismutase do not explain divergent survival phenotypes , 2006, Neuroscience Letters.

[120]  H. Horvitz,et al.  Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis , 1997, Annals of neurology.

[121]  A. Klip,et al.  Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein of 33 kDa (VAP-33): a broadly expressed protein that binds to VAMP. , 1998, The Biochemical journal.

[122]  M. Zeviani,et al.  Superoxide dismutase gene mutations in Italian patients with familial and sporadic amyotrophic lateral sclerosis: identification of three novel missense mutations , 2001, Neuromuscular Disorders.

[123]  J. Slade,et al.  Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS) , 1998, Neuroreport.

[124]  E. Granieri,et al.  Amyotrophic lateral sclerosis, rural environment and agricultural work in the Local Health District of Ferrara, Italy, in the years 1964–1998 , 2005, Journal of Neurology.

[125]  J. Morrison,et al.  Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[126]  W. Snider,et al.  Restricted Expression of G86R Cu/Zn Superoxide Dismutase in Astrocytes Results in Astrocytosis But Does Not Cause Motoneuron Degeneration , 2000, The Journal of Neuroscience.

[127]  Jack A. Taylor,et al.  VEGF PROMOTER HAPLOTYPE AND AMYOTROPHIC LATERAL SCLEROSIS (ALS) , 2004, Journal of neurogenetics.

[128]  Paul Alan Cox,et al.  Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[129]  J. Belleroche,et al.  Investigation of a null mutation of the CNTF gene in familial amyotrophic lateral sclerosis , 1995, Journal of the Neurological Sciences.

[130]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[131]  G. Rouleau,et al.  Familial amyotrophic lateral sclerosis , 2002, Muscle & nerve.

[132]  D. Lev,et al.  The first nonsense mutation in alsin results in a homogeneous phenotype of infantile‐onset ascending spastic paralysis with bulbar involvement in two siblings , 2003, Clinical genetics.

[133]  J. Connor,et al.  Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences , 2004, Journal of the Neurological Sciences.

[134]  J. Coyle,et al.  Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis , 1990, Annals of neurology.

[135]  M. Pericak-Vance,et al.  The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis , 2001, Nature Genetics.

[136]  Ahmet Hoke,et al.  Loss of ALS2 Function Is Insufficient to Trigger Motor Neuron Degeneration in Knock-Out Mice But Predisposes Neurons to Oxidative Stress , 2005, The Journal of Neuroscience.

[137]  Robert H. Brown,et al.  Apolipoprotein E ϵ4 allele is not associated with earlier age at onset in amyotrophic lateral sclerosis , 1995 .

[138]  R. Orrell,et al.  Two novel mutations in the gene for copper zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. , 1995, Human molecular genetics.

[139]  D. Borchelt,et al.  Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. , 1999, Human molecular genetics.

[140]  Z. Olkowski,et al.  Mutant AP endonuclease in patients with amyotrophic lateral sclerosis , 1998, Neuroreport.

[141]  V. Meininger,et al.  Genetics of familial ALS and consequences for diagnosis 1 , 1999, Journal of the Neurological Sciences.

[142]  Richard W. Orrell,et al.  The relationship of spinal muscular atrophy to motor neuron disease: Investigation of SMN and NAIP gene deletions in sporadic and familial ALS , 1997, Journal of the Neurological Sciences.

[143]  J. Haines,et al.  Lack of association between apolipoprotein E genotype and sporadic amyotrophic lateral sclerosis , 1998, Neurogenetics.

[144]  P. Caroni,et al.  Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron Disease , 2002, The Journal of Neuroscience.

[145]  Robert H. Brown,et al.  A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. , 2002, American journal of human genetics.

[146]  B. Crain,et al.  Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. , 1998, American journal of human genetics.

[147]  J. Haines,et al.  Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity. , 1991, The New England journal of medicine.

[148]  H. Horvitz,et al.  Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis , 1998, Annals of neurology.

[149]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[150]  Q. Zhu,et al.  Disruption of Type IV Intermediate Filament Network in Mice Lacking the Neurofilament Medium and Heavy Subunits , 1999, Journal of neurochemistry.

[151]  M. Hayden,et al.  Mutation screening of the ALS2 gene in sporadic and familial amyotrophic lateral sclerosis. , 2003, Archives of neurology.

[152]  A. Al-Chalabi,et al.  Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: Analysis of 155 cases and identification of novel insertion mutation , 1997, Annals of neurology.

[153]  J. Haines,et al.  Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33–q35 , 1994, Nature Genetics.

[154]  S H Appel,et al.  Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. , 1995, Brain : a journal of neurology.

[155]  J. Hugon,et al.  The Guam Cycad Toxin Methylazoxymethanol Damages Neuronal DNA and Modulates Tau mRNA Expression and Excitotoxicity , 1999, Experimental Neurology.

[156]  P. Shaw,et al.  Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS) , 2000, Neuroreport.

[157]  F. Bischoff,et al.  Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1 , 1991, Nature.

[158]  S. Ennis,et al.  A novel candidate region for ALS on chromosome 14q11.2 , 2004, Neurology.

[159]  E. Bertini,et al.  Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. , 2002, American journal of human genetics.

[160]  P. Carmeliet,et al.  Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration , 2004, Neurobiology of Disease.

[161]  D. Labuda,et al.  Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy , 2005, Annals of neurology.

[162]  A. Al-Chalabi,et al.  A common founder for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian population , 2005, Human Genetics.

[163]  A. Levey,et al.  Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis , 1995, Annals of neurology.

[164]  L. Kurland,et al.  Familial adult motor neuron disease: amyotrophic lateral sclerosis , 1986, Neurology.

[165]  Lin Jin,et al.  Aberrant RNA Processing in a Neurodegenerative Disease: the Cause for Absent EAAT2, a Glutamate Transporter, in Amyotrophic Lateral Sclerosis , 1998, Neuron.

[166]  P. Leigh,et al.  Dose-ranging study of riluzole in amyotrophic lateral sclerosis , 1996, The Lancet.

[167]  T. Deguchi,et al.  A null mutation in the human CNTF gene is not causally related to neurological diseases , 1994, Nature Genetics.

[168]  Ichiro Kanazawa,et al.  Glutamate receptors: RNA editing and death of motor neurons , 2004, Nature.

[169]  J. Julien,et al.  Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-α , 2001, The Journal of cell biology.

[170]  E. Mandelkow,et al.  Overexpression of Tau Protein Inhibits Kinesin-dependent Trafficking of Vesicles, Mitochondria, and Endoplasmic Reticulum: Implications for Alzheimer's Disease , 1998, The Journal of cell biology.

[171]  G. Kisby,et al.  Evidence of reduced DNA repair in amyotrophic lateral sclerosis brain tissue , 1997, Neuroreport.

[172]  A. Malafosse,et al.  Association between centromeric deletions of the SMN gene and sporadic adult‐onset lower motor neuron disease , 1998, Annals of neurology.

[173]  Jean-Pierre Julien,et al.  Cytoskeletal defects in amyotrophic lateral sclerosis (motor neuron disease). , 2008, Novartis Foundation symposium.

[174]  V. Meininger,et al.  A Frameshift Deletion in Peripherin Gene Associated with Amyotrophic Lateral Sclerosis* , 2004, Journal of Biological Chemistry.

[175]  Wen-Lang Lin,et al.  Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein , 2000, Nature Genetics.

[176]  U. Monani,et al.  The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. , 2000, Human molecular genetics.

[177]  J. Powell,et al.  D90A‐SOD1 mediated amyotrophic lateral sclerosis: A single founder for all cases with evidence for a Cis‐acting disease modifier in the recessive haplotype , 2002, Human mutation.

[178]  V. Meininger,et al.  Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[179]  N. Hirokawa,et al.  Microtubule-associated proteins regulate microtubule function as the track for intracellular membrane organelle transports. , 1996, Cell structure and function.

[180]  J. Powell,et al.  Mutations in all five exons of SOD‐1 may cause ALS , 1998, Annals of neurology.

[181]  Paul Alan Cox,et al.  Biomagnification of cycad neurotoxins in flying foxes , 2003, Neurology.

[182]  H. Geerts,et al.  Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. , 1999, The American journal of pathology.

[183]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.