Impairments in spatial generalization of visual skills after V4 and TEO lesions in macaques (Macaca mulatta).

The authors tested the spatial generalization of shape and color discriminations in 2 monkeys, in which 3 visual field quadrants were affected, respectively, by lesions in area V4, TEO, or both areas combined. The fourth quadrant served as a normal control. The monkeys were trained to discriminate stimuli presented in a standard location in each quadrant, followed by tests of discrimination performance in new locations in the same quadrant. In the quadrant affected by the V4 + TEO lesion, the authors found temporary but striking deficits in spatial generalization of shape and color discriminations over small distances, suggesting a contribution of areas V4 and TEO to short-range spatial generalization of visual skills.

[1]  P. Maquet,et al.  Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[3]  C. Gilbert,et al.  Learning to see: experience and attention in primary visual cortex , 2001, Nature Neuroscience.

[4]  H. A. Pham,et al.  Perceptual deficits after lesions of inferotemporal cortex in macaques. , 2000, Cerebral cortex.

[5]  Leslie G. Ungerleider,et al.  Loss of attentional stimulus selection after extrastriate cortical lesions in macaques , 1999, Nature Neuroscience.

[6]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[7]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[8]  L. Vaina,et al.  Neural systems underlying learning and representation of global motion. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[10]  C. Gilbert,et al.  Perceptual learning of spatial localization: specificity for orientation, position, and context. , 1997, Journal of neurophysiology.

[11]  A. Karni,et al.  Learning perceptual skills: behavioral probes into adult cortical plasticity , 1997, Current Opinion in Neurobiology.

[12]  M. Fahle Specificity of learning curvature, orientation, and vernier discriminations , 1997, Vision Research.

[13]  Leslie G. Ungerleider,et al.  Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques , 1996, Visual Neuroscience.

[14]  W. Merigan,et al.  Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques , 1996, Visual Neuroscience.

[15]  G. Orban,et al.  Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. , 1995, The Journal of physiology.

[16]  R. Desimone,et al.  Inferior temporal mechanisms for invariant object recognition. , 1994, Cerebral cortex.

[17]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[18]  A. Karni,et al.  The time course of learning a visual skill , 1993, Nature.

[19]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[20]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[21]  S. Hochstein,et al.  Attentional control of early perceptual learning. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[22]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[23]  S. R. Butler,et al.  The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy , 1993, Behavioural Brain Research.

[24]  S. R. Butler,et al.  The effects of lesions of area V4 on the visual abilities of macaques: colour categorization , 1992, Behavioural Brain Research.

[25]  J. Kulikowski,et al.  The effects of V4 lesions on the visual abilities of macaques: shape discrimination , 1992, Behavioural Brain Research.

[26]  M. Ahissar,et al.  Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. , 1992, Science.

[27]  H. Pashler,et al.  Improvement in line orientation discrimination is retinally local but dependent on cognitive set , 1992, Perception & psychophysics.

[28]  D Sagi,et al.  Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[30]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[31]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  A. Cowey,et al.  On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[35]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[36]  David Gaffan,et al.  Visual Identification following Inferotemporal Ablation in the Monkey , 1986, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[37]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[38]  E. Iwai Neuropsychological basis of pattern vision in macaque monkeys , 1985, Vision Research.

[39]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[40]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[41]  J. Kulikowski,et al.  Primate cortical area V4 important for colour constancy but not wavelength discrimination , 1985, Nature.

[42]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[43]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[44]  P. Gouras,et al.  Spectral selectivity of cells and its dependence on slit length in monkey visual cortex. , 1980, Journal of neurophysiology.

[45]  M. Mishkin,et al.  Role of inferior temporal cortex in interhemispheric transfer , 1979, Brain Research.

[46]  P. Dean,et al.  Visual cortex ablation and thresholds for successively presented stimuli in rhesus monkeys: II. Hue , 1979, Experimental Brain Research.

[47]  P. Dean Visual cortex ablation and thresholds for successively presented stimuli in rhesus monkeys: I. Orientation , 1978, Experimental Brain Research.

[48]  S. Zeki Functional specialisation in the visual cortex of the rhesus monkey , 1978, Nature.

[49]  E. Buchtel,et al.  Effects of experience on interocular transfer of pattern discriminations in split-chiasm and split-brain cats. , 1978, Journal of comparative and physiological psychology.

[50]  D. B. Bender,et al.  Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons , 1977, Brain Research.

[51]  D. B. Bender,et al.  Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures. , 1975, Journal of neurophysiology.

[52]  S. Iversen Visual discrimination deficits associated with posterior inferotemporal lesions in the monkey. , 1973, Brain research.

[53]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[54]  M Mishkin,et al.  Further evidence on the locus of the visual area in the temporal lobe of the monkey. , 1969, Experimental neurology.

[55]  G. B. Wetherill,et al.  SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. , 1965, The British journal of mathematical and statistical psychology.

[56]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[57]  William T. Newsome,et al.  Effects of inferotemporal cortex lesions on form-from-motion discrimination in monkeys , 2005, Experimental Brain Research.

[58]  C. Gross,et al.  Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys , 2004, Experimental Brain Research.

[59]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[60]  E. Bullmore,et al.  Society for Neuroscience Abstracts , 1997 .

[61]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[62]  R. Desimone,et al.  Attentional control of visual perception: cortical and subcortical mechanisms. , 1990, Cold Spring Harbor symposia on quantitative biology.

[63]  R. Doty,et al.  Lateralization in the nervous system , 1977 .

[64]  C. Gross 7 – The Neural Basis of Stimulus Equivalence Across Retinal Translation , 1977 .

[65]  P. Dean,et al.  Effects of inferotemporal lesions on the behavior of monkeys. , 1976, Psychological bulletin.

[66]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.