DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis (Lepidoptera: Crambidae)

[1]  E. V. Nieukerken,et al.  DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognising cryptic species , 2012 .

[2]  R. Nagoshi,et al.  Use of DNA Barcodes to Identify Invasive Armyworm Spodoptera Species in Florida , 2011, Journal of insect science.

[3]  L. Bauer,et al.  Field-Cage Methodology for Evaluating Climatic Suitability for Introduced Wood-Borer Parasitoids: Preliminary Results from the Emerald Ash Borer System , 2011, Journal of insect science.

[4]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[5]  P. Hebert,et al.  Cryptic diversity and phylogeography of high alpine Sattleria—a case study combining DNA barcodes and morphology (Lepidoptera: Gelechiidae) , 2011 .

[6]  J. Armstrong,et al.  Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae) , 2011, Molecular Biology Reports.

[7]  Yong-Hua Liu,et al.  Genetic Diversity and Population Structure of Panonychus citri (Acari: Tetranychidae), in China Based on Mitochondrial COI Gene Sequences , 2010, Journal of economic entomology.

[8]  D. Janzen,et al.  Identity of the ailanthus webworm moth (Lepidoptera, Yponomeutidae), a complex of two species: evidence from DNA barcoding, morphology and ecology , 2010 .

[9]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[10]  K. Armstrong DNA barcoding: a new module in New Zealand’s plant biosecurity diagnostic toolbox , 2010 .

[11]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[12]  I. Kitching,et al.  Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-groups (Lepidoptera: Sphingidae) , 2008 .

[13]  David J. Lohman,et al.  Cryptic species as a window on diversity and conservation. , 2007, Trends in ecology & evolution.

[14]  S. Ratnasingham,et al.  BOLD : The Barcode of Life Data System (www.barcodinglife.org) , 2007 .

[15]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[16]  Y. Ishikawa,et al.  Variation in mitochondrial COII gene sequences among two species of Japanese knotweed-boring moths, Ostrinia latipennis and O. ovalipennis (Lepidoptera: Crambidae) , 2006, Bulletin of Entomological Research.

[17]  D. Janzen,et al.  DNA barcodes distinguish species of tropical Lepidoptera. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  V. Savolainen,et al.  Towards writing the encyclopaedia of life: an introduction to DNA barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  R. Hellmich,et al.  Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis , 2005, International journal of biological sciences.

[20]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[21]  D. Janzen,et al.  Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Krane,et al.  Combining DNA sequences and morphology in systematics: testing the validity of the dragonfly species Cordulegaster bilineata , 2002, Heredity.

[23]  J. Mallet,et al.  Host races in plant-feeding insects and their importance in sympatric speciation. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  J. J. Kruse,et al.  Molecular Phylogeny Within and Between Species of the Archips argyrospila Complex (Lepidoptera: Tortricidae) , 2001 .

[25]  S. Trewick Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand , 2000 .

[26]  Yongping Huang,et al.  Usefulness of mitochondrial COII gene sequences in examining phylogenetic relationships in the Asian corn borer, Ostrinia furnacalis, and allied species (Lepidoptera : Pyralidae) , 1999 .

[27]  J. Logan Extraction, Polymerase Chain Reaction, and Sequencing of a 440 Base Pair Region of the Mitochondrial Cytochrome Oxidase I Gene from Two Species of Acetone-Preserved Damselflies (Odonata: Coenagrionidae, Agrionidae) , 1999 .

[28]  A. Brower Delimitation of phylogenetic species with DNA sequences: a critique of Davis and Nixon's population aggregation analysis. , 1999, Systematic biology.

[29]  F. Sperling,et al.  Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. , 1999, Molecular phylogenetics and evolution.

[30]  H. Bandelt,et al.  Median-joining networks for inferring intraspecific phylogenies. , 1999, Molecular biology and evolution.

[31]  J. Thompson,et al.  Multiple sequence alignment with Clustal X. , 1998, Trends in biochemical sciences.

[32]  V. Resh,et al.  Morphologically Cryptic Species Confound Ecological Studies of the Caddisfly Genus Gumaga (Trichoptera: Sericostomatidae) in Northern California , 1998 .

[33]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[34]  Y. Fu,et al.  Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. , 1997, Genetics.

[35]  F. Sperling,et al.  AMPLIFIED MITOCHONDRIAL DNA AS A DIAGNOSTIC MARKER FOR SPECIES OF CONIFER-FEEDING CHORISTONEURA (LEPIDOPTERA: TORTRICIDAE) , 1995, The Canadian Entomologist.

[36]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[37]  W. Li,et al.  Statistical tests of neutrality of mutations. , 1993, Genetics.

[38]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[39]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[40]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[41]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[42]  G. Bush SYMPATRIC HOST RACE FORMATION AND SPECIATION IN FRUGIVOROUS FLIES OF THE GENUS RHAGOLETIS (DIPTERA, TEPHRITIDAE) , 1969, Evolution; international journal of organic evolution.

[43]  G. Talbot The Fauna of British India Including Ceylon and Burma Butterflies Vol. 1 , 2013 .

[44]  L. Stejneger,et al.  The Fauna of British India, including Ceylon and Burma , 1908, Nature.